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technique for the deep ocean

by
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Science and Engineering
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Doctor of Philosophy

Abstract

Present-day expeditionary oceanography is beginning to shift from a focus on short-
term ship and submersible deployments to an ocean observatory mode where long-
term temporally-focused studies are feasible. As a result, a critical need for in situ
chemical sensors is evolving. New sensors take a significant amount of time to develop;
thus, the evaluation of techniques in the laboratory for use in the ocean environment.
is becoming increasingly important. Laser-induced breakdown spectroscopy (LIBS)
possesses many of the characteristics required for such in situ chemical sensing, and

is a promising technique for field measurements in extreme environments. Although
many LIBS researchers have focused their work on liquid jets or surfaces, little at-
tention has been paid to bulk liquid analysis, and especially to the effect of oceanic
pressures on LIBS signals. In this work, laboratory experiments validate the LIBS
technique in a simulated deep ocean environment to pressures up to 2.76 x 107 Pa. A
key focus of this work is the validation that select elements important for understand-
ing hydrothermal vent fluid chemistry (Na, Ca, Mn, Mg, K, and Li) are detectable
using LIBS. A data processing scheme that accurately deals with the extreme nature
of laser-induced plasma formation was developed that allows for statistically accu-
rate comparisons of spectra. The use of both single and double pulse LIBS for high
pressure bulk aqueous solutions is explored and the system parameters needed for
the detection of the key analytes are optimized. Using both single and double pulse
LIBS, the limits of detection were found to be higher than expected as a result, of the
spectrometer used in this experimentation. However, the results of this validation
show that. LIBS possesses the characteristics to be a viable chemical sensing method
for in situ analyte detection in high pressure environments like the deep ocean.

Thesis Supervisors:
Alan D. Chave, Senior Scientist, WHOI

Alexandra H. Techet, Associate Professor, MIT
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Chapter 1

Introduction

The development of in situ chemical sensors is needed to explore and understand

the ocean and its processes. In present day oceanographic work, new sensors are

required for expeditionary science with underwater vehicles such as ROVs, AUVs,

and submersibles. A new paradigm for ocean study has begun with the implenen-

tation of ocean observatories. As these permanent observatories become the new

mode of oceanography, there will be a critical need for chemical sensors capable of

long-term deployment for ocean observatories to reach their full potential. The time

required to transform a bench-top laboratory technique into a full ocean-going system

is significant. The development phase initially requires validation that an analytical

technique will work under in situ conditions. In this thesis, laser-induced breakdown

spectroscopy (LIBS) is evaluated in the laboratory to determine if this bench-top an-

alytical technique is viable for development into a field-going oceanographic chemical

sensor.

1.1 Laser-Induced Breakdown Spectroscopy

Laser-induced breakdown spectroscopy is a type of atomic emission spectroscopy that

was first reported in the literature in 1962 and has since evolved into a technique for

laboratory chemical analysis [1]. LIBS technology is currently undergoing transfor-

mation from a benchtop analytical technique into a viable tool for field measurements,

and is emerging as a tool for chemical, geochemical, and environmental analysis in

extreme and hostile environments [2]. LIBS has been used in the analysis of a wide

variety of sample types including soils [3], archaeological artifacts [4], metal alloys

[5], bacterial spores, molds, pollens, and proteins [6], pharmaceuticals [7], glass [8],

nuclear power station steam generator tubes [9], and pigments in artwork [10]. A
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mobile instrument has been designed for studying polluted soils [11, 12]. LIBS is also

capab)le of stand-off, non-contact measurements, an(i a, fieldI deployable sYstemii has

been prop)osed by Palanco et al. with a, detection range on tile order of hunidreds of

meters [13]. A field-p)ortable LIBS system has been dleveloped1 for landmine detectioii

[14]. Along with lanid-based environmental applications, LIBS is finding applicability

to space exlorationi [15-20]. LIBS will be part of the ChemCanl instrument p)ackage

for the Mars Science Laboratory Rover that, will be launchedl in 2009 for geological

analysis.

Although there are many proposed land and space based applications of' LIBS

field-going senisors, it also holds promise for i7l SihL oceanl use. There are nuiierous

p)ossible app)lications in the areas of chemyical, geological, and b)iological oceanography'

rangimig from laboratorY exlperimnt at ion to fieldwork iii environiemits fromii estuaries

to the coastal zoneC to the deep ocean. The dlevelopmenit of anl oceaiiographic LIBS

sens5or could1( allow scientists to (determine the chemical compilosition of sedlimIentis.

rocks, or ocean fluids iii anl Vn situ. real-time mlode. Several researchers have alrcm lv

applied the LIBS techimology to marine-related ap)plications. For examiple. Niu ct al.

successfully used LIBS to determine st rontium levels iii marine algae [21] and Barbini

ct (l. used LIBS shipboard to analyze marine sedimients [22]. In the laboratory. Dc

Giacomo ct ali. have explored the use of LIBS for the detetionm of submerged solidl

targets [23 26].

1.1.1 How LIBS Works

The LIBS technique is based onl the analysis of the spectral eissiomi froii laser-

induced p)lasmas. and( is a type of atomic emission spectroscopy. Atoumic emiissionm

sp)ectroscopy uses an external energy source to excite grounid st ate atoms. The atois

sp)ontanieouisly emit, ra(diationl as they revert back to a lower energy state, with thle

emission intensity beinig p)roportionial t.o the concentration of' atoms iii the groundi(

state [27]. In the LIBS technique. one or two high-power, pullsed lasers. tylpicall,\

Q-switched Nd:YAG units, are used as the excitation source. The lasers are usuallY

olperated at, the fundamental wavelength of 1064 nin, although other wavelengthis caii

be used; for examplle, the lasers canl be frequency dlouibled to deliver 532 in. Addi-

tional componients of a typical LIBS systeni include focusing anol collect ion optics, ai

sp)ectrometer, and a dlata acquisitioni compulter. Collu1Ilercially available broadbI anid

spectrometers spani the 200 - 1000 nin wavelength region, allowing for thle siniiultamine-
ois, detection of inult ile elements [28].
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To generate a plasma spark, a short duration, high power laser beam is focused

onto or into a sample. An optically-induced plasma or spark is formed on the surface

(of a solid or on a liquid) or in the sample (in bulk liquid or in a gaseous medium)

when the laser power density or irradiance exceeds the breakdown threshold of the

sample [27]. Breakdown threshold irradiances using a 7-ns pulse width, 1064 inn

Nd:YAG laser have been reported by Kennedy et al. to be 5.6 x 1 0 9 W/cm 2 for

tap water and 8.31 x 109 W/cm 2 for saline solutions [29]. The plasma radiates both

a continuum component due to inverse Bremsstrahlung radiation from electron-ion

collisions, which decays rapidly, and an emission line component that decays more

slowly. Therefore, the plasma emission can be analyzed by spectroscopic methods by

time gating. The plasma light is initially dominated by a white light continuum which

contains little intensity variation as a function of wavelength. After breakdown, the

plasma expands outwards and back towards the focusing lens. The expansion occurs

at 105 m/s and creates an audible shock wave [30]. Plasma temperatures in bulk

liquids are in the range of 7,000 - 12,000 K [30]. Plasma decay occurs by radiative,

quenching, and electron-ion recombination processes that result in the formation of

neutral species [31].

A gated spectrometer covering part or all of the ultraviolet through near infrared

range (200 nm - 1000 nm) is used to capture the plasma spectrum. For simultane-

ous multi-element analysis, an Echelle spectrometer can be used which contains an

Echelle diffraction grating with coarse grooves and large blaze angles. The grooves

have steep sides to cover the full range of wavelengths, and a prism is needed to

separate overlapping orders of the grating [27, 32]. CCDs (charge coupled devices) or

ICCDs (intensified charge coupled devices) serve as the detector devices within the

spectrometers. The spectral line wavelengths and intensities obtained from plasma

ablation can be compared with a standard atomic line reference and/or calibrated

against samples of known makeup to determine the elemental composition of the

sample. The intensity of the spectral lines provides a quantitative description of the

elemental concentration [28, 33].

1.1.2 Advantages and Disadvantages of the LIBS Technique

LIBS as a spectrochemical technique possesses many advantages which make it es-

pecially attractive for development into an in situ sensor for oceanographic research.

However, the technique also possesses several disadvantages that must be addressed.
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LIBS call provide rapid multi-clemnent, aiialysis and hias the ('apability to detect

elements in the parts-p)er-inillion (ppii) range. All elements einit in the 200) - 940 nin

wavelength region an(l every element has its own unique sp)ectral signature; therefore,

all elements (,an theoretically b)e detected with LIBS. The emission lines obtained

from plasma ablat ion c-an be comp)ared with a standard reference of atomic lines to

determine the chemical composition of the sample bY comparison of wavelengths. For

example, the National Institute of St andards an(l Technology (NIST) maintains anl on-

line atomic spectrunm datalbase (lit tpl://phIysic,s.iiist,.gov/Pliysl3 e,fDait a/ASD/indel(x .litiiil).

Umilike other techniques t hat are useful for analyzing one( form of' mat erial, LIB3S c-an

chemically analyze all three states of matter (solid. liquid, and gas). The sample size

for LIBS is inininial with typically, 0.1 jig - 0.1 ig of material ablated if a solid sample

is analyzed. The samplle size required miinimizes the (lest ruct iveniess ami( invasiness

of the technique. LIBS does not require aiiy preparatiomn of ai sampille before analdysis

aiid unlike niany aiialvtical techniques. does not require chemical reagents to dlissolve

the samiple [27]. This avoids containinationi prolems ali( redluces" t he t ime for anal-

ysis. These characteristics makes LIBS suitable for real-t ime, In, situ analYsis. M' ost

analyt ical met hods (e.g.. wet, chemiistrv t echniques) caminot produce inst ant results In

a field environment . Other imiethods canl be tilie-ilit ensive. withI severl- (layVs needed

before results are available. Rapid aiiahYsis is lpossible wV,it li LIBS as it onlY requires

oiie laser p)ulse to generate a plasnia. although tYpicallY mnierolls accumumiha t ionls of

p)lasmas are ob)tained. A large number of measurement s c,an be taiken qiickly, imaking

the elemental comipositlonl of the sanliple idenitifiable oil at liealyN Ieal-tinei basis.

LIBS has been identified as a viable technique for use iii ext reme enivirominelit s

because direct coiitact with the samiple is not necessary: onily op)ticall m-(ess is reqirimed .

Fiber olptic's c,am be used to reach (distanices far fromn the laser. The laser can also be

focused oii a samlple at a (distance, miaking LIBS useful for remiote nieasurements. Thec

stand(-off analysis capabilities of LIBS mnake it a viable in situ analytical techique.

Thme compilonents of' the sYstem canl also be mnade small amid ruggedl. Unlike imani\x

tradlitioinal ainalyt ical techniques that require collectioni of al samlple followed by" thle

transport of the sample to a laboratory. LIBS measurememits cami be made dlirectlY

in the field. This elimuinates thme need to store the saImpJle iii comnditions that differ'

froin the natural enviroment . This is aii impilortanit advamitage for oceaniographY due

to pressure and teimplerature effects. LIBS canl also be used1 for surface cleaimg of'

a saiple. Repetitive sampling at, the same spot can be usedl for ablation through

weathered surfaces to reach undi(erlYinig inaterial. This could be useful for roc'ks which

(c0u11( be -drilled" through to areas beneath fouling aimd to det ermine chemical imiakeup
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of the fouling. These benefits make LIBS useful for chemical analysis in extreme

environments suggesting that it is a viable technique for use in the deep ocean [28,

31, 34-36].

Although there are many advantages to the LIBS technique, there are several

disadvantages that must be acknowledged. LIBS is a semi-quantitative technique as

it is often difficult to obtain suitable standards. LIBS does not have the sensitivity

and precision of many state-of-the-art laboratory analytical techniques. Furthermore,

measurements are highly variable. There are also chemical interference (matrix) ef-

fects between analytes that must be addressed [27].

1.1.3 LIBS in Liquids

Several researchers have been successful in causing plasma ablation to occur oil ma-

terials submerged in water and on liquid surfaces. However, only a few researchers

have focused their work on LIBS of dissolved analytes within bulk aqueous solutions

[23, 37-- 42] due to the inherent, difficulty of detection. If the liquid is transparent at

the laser wavelength, a plasma can be formed in the bulk liquid below the surface

[37]. The plasma formed in a bulk liquid compared to that formed on a solid or in air

displays reduced light intensity and emission lifetime due to quenching [37, 38, 43, 44].

This emission time interval is on the order of 1 fis or less in liquid, which is signifi-

cantly lower than at the air-liquid interface where the time interval averages 5 - 20

Its. In addition, spectral lines are broadened by the Stark effect, which results from

ion and electron collisions [37, 45]. Furthermore, "moving breakdown" occurs that

randomly changes the distance between the plasma and the collection optics, a phe-

nomenon that is not relevant to solids in air. The plasma expands along the beam

path, resulting in an elongated plasma that cavitates cylindrically [46]. For many

aqueous applications, these issues can be avoided by analysis on a liquid surface, jet,

or film; however, for the development of an in situ oceanic system, it is necessary to

work directly with bulk liquids.

As early as 1984, Cremers et al. [37] were able to identify many elements in

an aqueous solution. This work showed that the use of two laser sparks, (double

or dual pulse LIBS), with a short interpulse delay, improved the detection limit, for

dissolved species. Using two laser pulses allowed lower concentrations of elements to

be detected. The first spark creates a cavitation bubble. The second pulse is fired

into the bubble, forming a plasma within it, allowing the measurement to be made

in a gaseous environment.
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Few LIBS researchers have focused oi liquids and no work has been done at high

pressures, and therefore little is known about the pressure effect.- Relatively few

studies have focused on dissolved species in liquids and therefore much work on the

experimental parameters for measurements of such species is necessary.

1.2 Scientific Application: Hydrothermal Vent

Chemistry

Study of in situ hydrothermal vent chemistry could benefit greatly from the develop-

ment of a LIBS sensor. Ati mid-ocean ridges, seawater circulates through the fractured

and )ermeable crust. Interactions with the surrounding rock induces major chelical

changes to the fluid. At vent orifices, exit, temperatures reach 200 - 405"C at ainbient

pressures of 8.1 x 106 Pa to 3.6 x 107 Pa corresponding to ocean depths of 800 i

to 3600 m [47]. The circulation is driven by the direct or indirect thermnal efiecIs of

magma at sub-seafloor depths of up to a few ki- additionally. substantial changes

in fluid composition occur due to interaction with the host rock. )hase separation,

and possibly imagma degassing [48]. For example. many alkalis (e.g.. Li, Na, and Ca)

and transition metals (e.g., Fe, Mn., Cu. and Zn) are leached from tile host rock and

concentrated to varying degrees in the fluid, while Mg and SO,, are largely remIoved

from the fluid [47].

As vent fluids exit the seafloor, the very hot fluids mix with ambient seawater

which rapidly changes the chemistry (Figure 1-1). Measuring the fluid pr)operties

in situ is very difficult. Collecting samples for measurement shipboard or back i1i a

shore laboratory is usually done by using non-reactive titanini samplers to extract

water, which is then brought to the surface. Some elements remain in solution as the

temperature and pressure changes., however, others preci)itate out [49]. In addition,

the chemistry of some vents are known to change over short (days to Years) timne

scales [50]. The use of a method like LIBS, therefore, is attractive for obtaining aii

understanding of the chemistry of vents that has thus far been impossil)le to achieve.

Six elements (sodium, calcium. manganese. magnesium, potassium, and lithium)

were selected as the primary focus of this work because of their key im)ortance at

hydrothermal vents. Sodium (Na) is the most abulndant cation in vent fluids and its

study is ilnportant for gaining an understanding of phase separation processes [48].

Manganese (Mn) exists as a trace metal in seawater l)ut has a higher concentration

in vent, fluids due to leaching from the host rock [48]. Mn can also be st udied si-
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inultaneously with Fe as an indication of subsurface deposition as Fe precipitates out

while Mn stays in solution. Calcium (Ca) is the second most abundant cation in

vent fluids, and is typically enriched in vent fluids compared to seawater [50]. Ca is

released into vent fluids when sodium is taken up during albitization reactions with

the host rock [50]. Magnesium (Mg) is very low to nonexistent in hydrothermal vent

fluids; however, it is present in seawater [48]. If Mg is detected in vent fluid sam-

ples, it is evidence for contamination; thus, a sensor that can detect Mg is desirable.

Potassium (K) and Lithium (Li) are typically highly enriched in vent fluids due to

leaching from basalts [48]. In vent fluids, concentrations range from approximately

250 - 23,163 ppm for Na, 0.6 - 399 ppm for Mn, -54 - 4477 ppm for Ca, -47 - 3166

ppm for K, 0 ppm for Mg, and 0.7 - 1073 ppm for Li [47]. In seawater, concentrations

are approximately 10933 ppm Na, <0.001 Mn, 419 ppm Ca, 405 pprl K. 1300 ppm

Mg, and 0.2 ppm Li [47].
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1.3 Thesis Overview

New sensors take a significant amount of time to develop; thus, the evaluation of

techniques in the laboratory for use in the ocean environment is becoming increas-

ingly important. This thesis focuses on this proof-of-concept phase, in which the

LIBS analytical technique is evaluated in the laboratory under in situ conditions. It

is divided into five chapters that cover single and double pulse LIBS and delves into

the parameters that must be optimized for the detection of elements in high pressure

aqueous solutions. A new data processing scheme for dealing with the inherent vari-

ability of laser-induced plasmas is developed in this thesis. This processing scheme is

applied to all data presented in Chapters 4 - 6.

Chapter Two, "Laser-induced breakdown spectroscopy of bulk aqueous solutions

at oceanic pressures: Evaluation of key measurement parameters," is a manuscript

that appeared in the 1 May 2007 issue of Applied Optics [40]. It presents preliminary

investigations on the feasibility of using LIBS to detect analytes in bulk liquids at

oceanic pressures. This work was completed as part of two extensive research visits

to the University of South Carolina.

Chapter Three, "Analysis of laser-induced breakdown spectroscopy (LIBS) spec-

tra: The case for extreme value statistics," is a manuscript that has been accepted for

publication by Spectrochimica Acta: Part B [51]. It presents a new data processing

approach for LIBS spectra.

Chapters Four and Five are complementary chapters that look at the detection of

analytes in bulk aqueous solutions at oceanic pressures using single pulse (Chapter

4) and double pulse (Chapter 5) LIBS. These two chapters focus on the optimization

of the key experimental parameters for the detection of analytes. Chapter Four deals

with the detection of three elements: sodium, calcium, and manganese and the in-

terrelationship of pressure, gate delay, and pulse energy. Chapter Five concentrates

on the detection of sodium, calcium, manganese, potassium, and magnesium and the

interrelationship of pressure, gate delay, pulse energies, and interpulse delay. In both

chapters, calibration curves and limits of detection are presented.

Chapter Six presents preliminary investigations into matrix effects for three ele-

ments: sodium, calcium, and potassium. This chapter also explores the effect of a

chloride versus sulfate background matrix on the detection of sodium and potassium.
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Chapter 2

Laser-induced breakdown

spectroscopy of bulk aqueous

solutions at oceanic pressures:

evaluation of key measurement

parameters

The work in this chapter is published in the 1 May 2007 issue of Applied Optics as A.

P. M. Michel, M. Lawrence-Snyder, S. M. Angel, and A. D. Chave, "Laser-induced

breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: evaluation of

key measurement parameters."

2.1 Abstract

The development of in situ chemical sensors is critical for present day expeditionary

oceanography and the new mode of ocean observing systems that we are entering.

New sensors take a significant amount of time to develop; therefore, validation of tech-

niques in the laboratory for use in the ocean environment is necessary. Laser-induced

breakdown spectroscopy (LIBS) is a promising in situ technique for oceanography.

Laboratory investigations on the feasibility of using LIBS to detect analytes in bulk

liquids at oceanic pressures were carried out. LIBS was successfully used to detect

dissolved Na, Mn, Ca, K, and Li at pressures up to 2.76 x 107 Pa. The effects

of pressure, laser pulse energy, interpulse delay, gate delay, temperature, and NaCl
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concentration on the LIBS signal were examined. An optiml range of laser pulse

energies was found to exist for analyte detection in bulk aqueous solutions at both

low and high pressures. No pressure effect was seen on the enlission intensity for

Ca and Na and an increase in emission intensity with increased pressure was seen

for Mn. Using the dual pulse technique for several analytes, a very short. interpulsc

delay resulted in the greatest emission intensity. The presence of NaCl enllanced the

emission intensity for Ca, but had no effect on peak intensity of Mu or K. Overall, in-

creased pressure, the addition of NaCl to a solution, and temperature did not. inhibit

detection of analytes in solution and sometimes even enhanced the ability to detect

the analytes. The results suggest that LIBS is a viable chemical sensing method for

i'n situ analyte detection in high pressure environments like the deep ocean.

2.2 Introduction

Since laser-induced breakdown spectroscopy (LIBS) was first reported in 1962, the

technique has evolved into a widely used method for laboratory analytical cheinistrY

[1 -8]. Due to several advantages over other nethods, LIBS has been identified as

a viable tool for in situ measurements, especially in extreme environments [9. 10].

The technique vields simultaneous sensitivity to virtually all eleineits in the parts-

per-ilnillion (ppm) or better range in solids, gases, aerosols, and at the gas-lilifi(

interface. LIBS is effectively non-invasive, requiring only a siwall sami)le (typically, pg

to ng of material are ablated). Unlike for many analysis techniques, the sample does

not need to be prepared. LIBS requires only optical access to a sample ant therefore

can be used in a stand-off mode without perturbing the sainple environment. LIBS

measurements are essentially real-time, with typical sampling rates of less than i(

second per cycle. These characteristics are all required for in sitit cheinical sensing

in the ocean [11 15].

Although researchers have been successful at inducing plasina ablation oii sub-

merged materials [16], on a water surface or filn [17 22], and in liquid jets, droplets,

and flowing solutions, [23-29] only limited LIBS work has focused oi analyte de-

tection within bulk aqueous solutions [30-32]. Furthermore, the work within bulk

aqueous solutions has been at atmospheric pressure. Pioneering work t) Creiners

et al. [30] showed that LIBS could identify Li, Na, K, Rb, Cs, Be, Ca, B, and Al

in aqueous solutions with varying detection limits, but typically at the ppm level.

Several studies in bulk liquids have displayed a reduction in the tile during which

plasma emission can be observed as compared to that in air [16, 30, 31, 33]. The
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plasma lifetime is typically < 1 ps in bulk liquids, whereas at an air-liquid interface

it averages 5-20 ps. Laser-induced plasmas formed in solution are also characterized

by a reduction in plasma light intensity.

The effects of elevated pressure and temperature on LIBS spectra have received

limited attention. Although a few researchers report on LIBS at super-atmospheric

pressures, they do not extend beyond 1 x 107 Pa (note: 1 Pa = 1 x 10-' bars), which

is well below the ambient pressure in the deep ocean [9, 34]; yet, none of these studies

were for liquids. Although, we have previously reported preliminary findings that

show the ability to detect analytes in high pressure bulk aqueous solutions [35], we

now focus on the key measurement parameters that are needed for analyte detection.

The influence of in situ temperature is anticipated to be weak because of the high

plasma temperature (; 8000K at early times) [36-39].

For many years, oceanography has been in an expeditionary mode where research

vessels are used for short term instrument deployments with limited resolution in

time. Although oceanographers will continue to study the ocean in this way, a new

paradigm using ocean observatories for long term in situ observing is upon us. As

this shift towards long term ocean observing systems becomes recognized, we must,

also acknowledge the need for in situ sensors; especially those capable of temporal

studies. A major need is for chemical sensors. The development of new sensors for

oceanography takes a significant amount of time, and hence laboratory validation of

techniques such as LIBS is necessary now to identify techniques that are viable for

chemical detection in high pressure, high salinity, aqueous environments.

Although LIBS has the potential for use in numerous ocean environments, and

has applicability to solids and liquids, we have focused on the feasibility of detect-

ing elements at one extreme ocean environment, hydrothermal vents. Hydrothermal

venting occurs on mid-ocean ridges where seawater circulates through the fractured

and permeable oceanic crust. Exit temperatures at discrete (orifice diameters of a

few centimeters) high-temperature vents range from 200-405'C at ambient pressures

of 1.5 x 107 to 3.7 x 107 Pa. Low-temperature (usually < 35'C) diffuse flow seeping

from porous surfaces or cracks is frequently observed [40]. The circulation is driven

by the direct or indirect thermal effects of magma at sub-seafloor depths of up to

a few km. Substantial changes in fluid composition occur due to interaction with

the host rock, phase separation into a mixed liquid-vapor form, and possibly magma

degassing. Many alkalis (e.g., Li, Na, and Ca) and transition metals (e.g., Fe, Mn,

Cu, and Zn) are leached from the host rock and concentrated to varying degrees in

the hydrothermal fluid, while Mg and SO 4 are largely removed from the fluid by pre-
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cipitation into Mg-OH-Si minerals and anhydrite, respectively [40]. Von Danln and

Butterfield et al. provide comprehensive reviews of the chemistry of hYdrotherinal

vent fluids [40, 41].

In this paper, we explore the effect of vent, system enviromnental factors such

as pressure, temperature, and NaCl concentration on the LIBS signal to assess the

feasibility of developing LIBS for in situ chemical sensing in the ocean. In addition.

several system parameters (laser energy per pulse, interpulse spacing, and gate delay)

are optimized for high pressures for the first time.

2.3 Experiment

A laboratory LIBS system was designed to operate with a high pressure cell (Figure 2-

1). For single pulse experiments, a Continuum Surelite III laser (5-1Is pulSe wilth) was

utilized. For dual pulse experiments, a Quantel Nd 580 (9-is pulse width) was uised for

the first laser pulse followed by a second pulse from the Surelite laser. Both lasers were
Q-switched Nd:YAG types operated at the fundamental wavelength with a repetition

rate of 5 liz. For dial pulse experiments, a variable clock (Stanford Instruments

Model SR250) and a delay generator (Stanford Instruments Model DG535) coiarolled

laser triggering.

The laser pulses were focused into a high pressure cell, designed to reach pressures

of 3.45 x 10r Pa and constructed of stainless steel Swagelok fittings with six I"-ID

(1 in. = 2.54 cm) and 1-0"-1D ports. Stainless steel tubing ( ")connected one port,

to a pump (Isco Syringe Pumip Model 260D, Teledyne Technologies hicorporated)
that allowed aqueous solutions to flow into the cell and the cell to be pressurized.

A second port was equipped with the same tubing and a, regulating valve for cell

drainage. Two ports were fitted with 1" diameter, 1" thick circular sapphire win(ows

(MSW100/125, Meller Optics Incorporated) held in place by hex nuts and sealed
with rubber washers, allowing 4 of each window to be visible outside the cell. The

remaining two ports were sealed with Swagelok plugs (SS-1610-P).

Three different optical arrangements for focusing the laser pulses into the cell and

for collection of the plasma emission were used in these experiments, as detailed in

Figure 2-2. Because the purpose of these experiments was initial investigation into the
feasibility of using LIBS for ocean applications, one of the goals was determining the
best optical set-np. For dual pulse operation, the lasers were collinear. In some single

pulse configurations, light collection was collinear to the laser pulse, while in others it
was orthogonal for ease of alignment. All optics were mounted on micrometer stages,
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Figure 2-1: Schematic of the laboratory LIBS apparatus. Note that in the drawing,
the laser pulses are simply represented by arrows as their optical paths are described
in Figure 2-2.
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Figure 2-2: Optical arrangements used in experiments showing the high pressure cell
with respect to incoming laser pulses (signified by a dashed line). FO = Optical
Fiber. (a) LI, L2, and L: = f/4 lenses; Ml = dielectric coated mirror, (b) Lj =f/4, ToI
study the effect of NaC1 concentration on spectra: L2 = f/3 lens. L:j f/2 lens. To
study the detection of Ca at varying concentrations: L2 = f/4 lens, Li = f/3 lens, (c)
Ll=f/4, M1 and M, = parabolic off-axis mirrors

enaling precise control of beam overlap and collection field of view within the high

pressure cell. All lenses were made of fused silica. In all optical configurations,

the plasma emission was focused onto a 2-nin-core-diameter, 0.51-N.A. light guide

(Edmiund Scientific Co. Model 02551). The light guide was connected to a 0.25-in,

f/4 spectrograph (Chromex model 250is/RF) with a 1200-groove/un grating blazed
at 500 um. The slit width (W) ranged from 25 - 250 Im. Data were collected

on an intensified CCD detector (Princeton Instruments, I-Max 1024E) and acquired

with a computer running WinSpec/32 software. All spectra were accumulations of

250 shots at the maximum gain setting of 255. All error bars represent ±I(i. A

similar apparatus and set-up was previously used to demonstrate the feasibility of

high pressure LIBS [35].

The key LIBS timing parameters have been previously described [16, 32]. The

first and second laser pulse energies are referred to as E1 and E 2. For dual pulse

experiments, the time interval between the two pulses or interpulse delay, is referred

to as AT. The gate delay, td, is the time between the last laser pulse and turn-on of

the detector. The plasma emission is recorded by the detector for the length of time

set by the gate width, tb, which was set at 1 ps for all experiments reported here.
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Laser beam waist width d,,can be estimated by:

4fAM 2  (2.1)

where f is the focal length of the focusing lens (100 m), A is the laser wavelength

(1064 nm), M2 is the beam propagation ratio which is typically 2 - 10 for Nd:YAG

lasers (we use a value of 6), and D is the diameter of the illuminated aperture of the

focusing lens (- 25 mm) [42]. The beam waist width for the system is approximately

0.03 mm. The average irradiance (If) at the beam waist can be estimated using:

7i EL D 2
If -4TLf 2 A2 M 4  (2.2)

where EL is the laser pulse energy and TL is the pulse duration at the full peak width

at half of the maximum intensity (FWHM)[42] (for the Continuum laser, TL = 5 ns,

and for the Quantel laser, TL = 9 ns). The pulse energies of the Continuum laser

used vary between - 10 - 100 mJ. The irradiance of the beam at the beam waist thus

varies from P 2.4 x 1011 to ; 2.4 x 1012 W/CM 2. The pulse energies of the Quantel

laser used vary between z 10 - 125 mJ with the irradiance thus varying from 1.3 x

1011 to 1.7 x 1012 W/cm2 .

Sample solutions were made by dissolving NaCl, CaC12, LiCl, and MnSO1 .H20 in

deionized water. Where noted, NaCl was added to the solutions to simulate a seawater

environment. All concentrations are listed in parts per million (ppm wt./vol.).

2.4 Results and Discussion

2.4.1 The Effect of Pulse Energy on LIBS Emission

Single-Pulse LIBS

Two key constraints on the design of an oceanographic sensor system are instrument

power consumption and form factor, both of which must be minimized. LIBS opera-

tion with a small, low power laser would simplify the design of an oceanographic LIBS

instrument. The effect of pulse energy on signal intensity for analytes in solution at

elevated pressure was investigated with the goal of minimizing power consumption.

The peak signal intensity for four analytes (Li, Ca, Na, and Mn) was measured at

laser pulse energies ranging from 11 to 91 mJ at both low (7 x 105 Pa) and high (2.76

x 107 Pa) pressures using the collinear optical configuration shown in Figure 2-2(a)
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(b) Na(I) spectra taken at 2.76 x 107 Pa. Spectra offset for clarity.

Figure 2-3: Effect of laser pulse energy on the LIBS signal intensity of 1() ppm Na(l)
(588.995 ni).

(td = 350 us, W = 75 pn for Na, Mn, and Ca studies, and W = 250 Un for Li). Ten

spectra were recorded and averaged for each condition.

Figure 2-3 shows the dependence of the Na(l) (588.995 nin) emission line on laser

pulse energy for 100 ppin Na. In both low and high pressure experiments, as pulse

energy increases, a corresponding increase in peak intensity occurs until a iaximum

intensity is reached at 22 mJ (Figure 2-3(a)). Above this value, emission intensity

decreases sharply up to ;z 50 mJ, above which a more gradual decrease with energy

is observed. These data suggest that, independent of pressure, a low laser pulse

energy yields greater enission intensity providing the energy exceeds a threshold

value. Figure 2-3(b) compares spectra taken at laser pulse energies below, above,

and in the optimal energy range for Na. The top trace (22 mJ) shows a significantly

greater intensity than at either a very low (middle trace, 11 re,J) or a high (bottom

trace, 88 mJ) pulse energy.
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The effect of laser pulse energy on Ca (422.673 nm) and Li (670.776 nm and

670.791 nm, unresolved doublet) emission displayed similar trends. When less than

14 mJ was used, Ca was virtually undetectable. As the pulse energy was increased

above this level, emission intensified until a maximum was achieved at 36 mJ for low

pressure (7 x 105 Pa) and at 29 mJ for high pressure (2.76 x 107 Pa). This range

for both the low and high pressure environments was - 25 to 50 mJ. At energy levels

beyond the optimal range, intensity decreased slowly with increasing pulse energy,

possibly due to plasma shielding. Plasma shielding occurs when the plasma itself

reduces the transmission of the laser pulse energy along the beam path. Calcium

displayed a more gradual increase and then decrease in intensity and a wider range

of optimal energy compared to Na. Similar trends were observed for Li. At both low

and high pressures, plasma emission was not detectable below 11 mJ. At higher pulse

energies and both pressures, the emission maximum was recorded at 27 inJ, above

which a sharp decrease in intensity to 46 mJ was observed, followed by flattening to

72 mJ.

The relationship between emission intensity and laser pulse energy for the unre-

solved 403 nm Mn(l) triplet was slightly different than for the other three analytes.

Figure 2-4(a) shows that the lowest laser pulse energy (11 mJ) resulted in the high-

est emission intensity. At pulse energies greater than 11 mJ, the emission intensity

gradually decreased until it was no longer detectable above - 40 mJ and ; 70 mJ

for low and high pressures, respectively. The peak intensity was greater at high than

at low pressure. Figure 2-4(b) compares spectra taken at 11, 22, and 88 mJ at 2.76

x 107 Pa.

The data for Na, Ca, Li, and Mn suggest that the pulse energy required to op-

timize the LIBS signal is analyte-dependent due to different ionization energies, but

is minimally pressure dependent. A pulse energy threshold is also observed. For the

four analytes studied, a relatively low laser pulse energy (less than 50 mJ) produced

the greatest signal intensity. A low energy optimal range may exist due to effects

from plasma shielding or moving breakdown. Plasmas can expand back along the

laser beam path towards the laser resulting in elongated plasmas [43]. A higher en-

ergy pulse may form a more elongate plasma or a series of plasmas as the breakdown

threshold of the liquid is exceeded before the pulse reaches the focal point. This may

result in non-optimal collection of the plasma emission. Further studies using imaging

techniques are needed to elucidate the effect of pulse energy on the plasma.

Figure 2-5 shows the effect of pressure on the LIBS signal for Na (588.995 nm), Mn

(403 nm unresolvable triplet) and Ca (422.673 nm) using a low energy single pulse.
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Figure 2-4: Effect of laser pulse energy on the LIBS emission intensity of the unre-
solvable Mn (I) triplet (403 mun) (5,000 pprn Mn in 2,540) ppmi NaCl).

42



160- 0 0 0

,-,120

80O

5 10 15 85

Pressure (Pa) xl0 6

Figure 2-5: Effect of pressure on LIBS emission intensity. El = 100 ppri Na (588.995
iiii) with E = 22 m J; 0= 5,000 ppin Mn (403 nm unresolvable triplet) with 2,540
ppin NaCl, E = 14 m J; Lk = 500 ppm Ca (422.673 nm) with 2,540 ppin NaCl, E=
20 0J.

The gate delay was fixed at 350 us and the slit width was fixed at 7511m. Na and

Ca display no change in signal intensity with increasing pressure, but Mn shows an

increase. For all analytes examined, the FWHM did not change with pressure. Pres-

sure under oceanic conditions does not induce a deleterious effect on signal intensity

or on FWHM.

In these single pulse energy experiments, the same gate delay and gate width were

used for all energy levels and pressures. As discussed later in this paper, optimal gate

delay may be energy dependent. Optimal gate width was not investigated and may

be pressure and/or energy level dependent. As a result, the selected gate width and

gate delay may influence the measured emission intensity. Optimal gate delay could

also be analyte dependent, and hence a different gate delay could yield another trend

with pulse energy. However, the selected conditions demonstrate that low energy

single laser pulses at high pressures are viable for measuring analytes in bulk aqueous

liquids. This is promising toward the development of an ocean-going instrument

where a small, low power laser will be critical.

Dual Pulse LIBS at High Pressure

An evaluation of dual pulse LIBS for high pressure bulk solutions shows that analyte

detection is highly dependent on the interpulse delay. If the interpulse delay is short

(< 1 ps), signal intensity is greatly enhanced when compared to that measured using

longer delay times. However, such a small interpulse delay may not be sufficient

for a cavitation bubble to fully form before the second laser pulse creates a spark.
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Dual pulse LIBS has been shown to enhance the signal intensity for some analYtes iii

bulk aqueous solutions at atnlospheric pressure [30, 32]. However. such ehaiceneuts

using longer interpulse delay times (o not occur for high pressure liquids.

To demonstrate the coupled effect of interpulse delay and pulse energy on emissiOu

intensity, four energy level conditions were compared for four analytes at high pressure

(2.76 x I0f Pa) over a range of interpulse delay tines. The four conditions were: 1)

low El, low E 2 (low-low), 2) high El, high E 2 (high-high), 3) low Ej, high E2 (low-

high), and 4) high El, low E2 (high-low), and are detailed in Table 2.1, (td = 350 us,

tb =1 Its). These experinents were completed using the optical configuration shown

in Figure 2-2(a).

For Ca (W = 100/im), using a low E1 followed by a low E 2 resulted iii the highest

peak intensity, possibly because when sununed they give a low total energy (Figure

2-6). The greatest emission is observed for EI = 13 i.J and E, = 6 niJ and yields t he

ionic Ca peaks (393.366 nn and 396.847 nmn in addition to the atomic peak 422.673

ni). For this low-low condition, Figure 2-7(a) shows the emission intensity cliaige

with AT. For AT greater than I Its, the intensity remained stal)le at a value of 1.5

* 104 a.u.

For AT less than 1 Its, the low-low configuratioi yielded intensities between 2.5

x 10 and 8.7 x 101 a.u. Figure 2-7(b) compares spectra at very short (30 us - upper

trace) to long (30 /ts - lower trace) AT values. When a short AT is used, three Ca

peaks (Ca(II) 393.366 11111, Ca(I) 396.847 nm, and Ca(I) 422.673 in) are visible,
while for long AT, only the Ca(I) peak is present with a much lower itteiisity. Wheii

AT is 30 us, the low-low configuration yields significantly greater enlissiou intensity

Table 2.1: Conditions used to study the effect of dual pulse energies oil LI BS einissiou

Low El High El Low El High El
Low E2  High E2  High E2  Low E,,
E1  E 2  E1  E 2  E1  E, El E2

(niJ) (n.J) (mJ) (mJ) (mJ) (in'J) (nJ) (in,J)

1,000 ppm Ca, 13 6 105 84 13 84 105 6
2,540 ppm NaC1
100 ppn Li 31 20 105 84 31 84 105 20
100 ppm Na 13 6 105 84 13 84 105 6
5,000 ppm Mn, 13 6 105 84 13 84 105 6
2,540 ppm NaC1

44



120"

-100

i80"

13 mJ, 6 mJ

. .40105J 84 mJ

S20 -!05 _mJ, 6mJ

13 mJ,84mJ J

390 400 410 420 430
Wavelength (nm)

Figure 2-6: Spectra of 1,000 ppm Ca with 2,540 ppm NaCl at 2.76 x 107 Pa under
four dual pulse conditions.

than the other pulse energy configurations. For Li (W = 250 pim), a low El followed

by a low E2 resulted in the greatest emission intensity. Table 2.2 shows peak emission

for Li for four different dual pulse conditions for AT between 50 ns and 1 [ts.

A small delay time (< 1 its) enhanced the emission as compared to a longer delay

time when the low-high and low-low energy levels were used. For Na(I), the low-high

and low-low conditions yielded similar intensities at all delay times, with maximum

values of 9.3 x 10' a.u. and 8.3 x 105 a.u., respectively, (W = 75 pin). After these

four runs were compared, an additional configuration consisting of a 13 mJ first pulse

followed by a 22 mJ second pulse was tested as a low-low dual pulse condition with a

slightly increased second pulse energy. This resulted in peaks with intensities of 2.4

x 106 - 2.9 x 106 a.u. for all AT values between 10 ns and 100 /is, suggesting again

that a low-low energy condition produces the greatest emission intensity. For Mn (W

= 250 pi), at all interpulse delay times between 20 ns and 100 ps, a low El followed

by a high E 2, resulted in the highest emission intensity (Figure 2-8).

These results show that the best dual pulse conditions vary by analyte. However,

Table 2.2: Dual pulse emission intensity (a.u.)

Condition 1 Condition 2 Condition 3 Condition 4
Low El High El Low El High El
Low E2 High E2 High E2 Low E2

100 ppm Li 2.5 x 105- 2 x 104- 5 x 104- 1.5 x 104 -

3.7 x 105  7 x 104  1.5 x 105  5.3 x 104

5,000 ppm Mn, 4 x 103 - 2.1 x 105 - 7 x 105 - 1.6 x 103 -

2,540 ppm NaCl 4.2 x 105 5 x 105 8.3 x 105 2.6 x 105

45



100

o 80

S60

S40

~20- 0 0 0 0 0

0;0 40 60 80 100
Interpulse Delay (pi)

(a) Effect of dual laser pulse enerpjies on emission intensity at 2.76 x 10'7 pa for 1,000)(

ppin Ca in 2,540) ppmn NaCi at variouis interpulse delaYs. Each dlata point is the

average of 5 spectra.

100-

80-

S60-

*40-

' 20 30 ns

0,- - foup. --

390 395 400 405 410 415 420 425
Wavelength (nm)
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Figure 2-7: Ca emission at different interpulse delays. (El 13 m,J, E2  6 ni,L)
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Figure 2-8: Spectra of 5,000 ppm Mn with 2,540 ppm NaC1 at 2.76 x 107 Pa under
four dual pulse conditions. The highest emission intensity is observed for a low-high
pulse combination.

it is important to note that at high pressure, very short interpulse spacing results in

a higher signal intensity than when dual pulses are separated by a more significant

delay in time. The need for such rapid firing of the two pulses is only accomplished

using two independent lasers instead of firing one laser rapidly. Two pulses separated

by a short AT approaches single pulse conditions, suggesting that dual pulse LIBS

may not be advantageous at elevated pressure.

2.4.2 Interrelationship of pulse energy, gate delay, and pres-

sure for Lithium

Emission intensity was recorded for the unresolved Li(I) doublet (670.776 nm and

670.791 nm) at two single pulse energies (27 mJ and 68 mJ) at both low (7 x 105

Pa) and high pressure (2.76 x 107 Pa) over a range of gate delays (0.1 - 3.7 /Its), (tb

= 1 [s, W = 25 pm) using the optical configuration of Figure 2-2(a). Comparing the

two curves in Figure 2-9, it is clear that a short gate delay should be used to enhance

emission intensity. These results also suggest that the optimal gate delay may be

pulse energy but not pressure dependent.

2.4.3 Effect of NaCl Concentration on LIBS Spectra

Understanding how pervasive Na and Cl ions in solution affect the detection of other

analytes is important for assessing the feasibility of using LIBS in the ocean, where
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Figure 2-9: Effect of gate delay on the LIBS signal for 1,000 ppmn Li (670 nin uinre-
solvable doublet). *= 7 x 10 ' Pa, zA, 2.57 x 10 Pa.
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Figure 2-10: Effect of the addition of NaCl in solution on spectra of 1,000 ppm Ca at
2.57 x 107 Pa.

the nominal concentrations of Na and Cl are 1.08 x 10' ppm and 1.95 x 10' ppm,

respectively [44]. Cremers et al. previously reported a decrease in the intensity ratio

of Ca II/Ca I with the addition of NaCl [30]. The peak signal intensity for three

analytes (1,000 ppm Ca, 100 ppm Mn, and 1,000 ppm K) was compared in three

solutes: 1) deionized water, 2) 2,540 ppm NaCl dissolved in deionized water, and

3) 25,400 ppm NaCl dissolved in deionized water using the optical configuration of

Figure 2-2(b) and for a range of pressures (3 x 10', 7 x 105, 1.7 x 106, 3.4 x 106, 6.9

x 106, 1.38 x 107 , 2.07 x 107, 2.76 x 107 Pa). These studies were carried out with El

= 40 mJ, E 2 = 125 mJ, AT = 46 ns, W =35 pm, and td = 100 ns for Ca and K and td

= 200 ns for Mn. The addition of NaC1 significantly increased the emission intensity

of the 422.673 nm Ca(I) atomic line whereas no significant effect was seen on the

393.366 nm and 396.847 nm Ca(II) ionic lines (Figure 2-10). The signal:noise ratio

for the Ca (II) ionic lines showed no significant change with the addition of NaCl,

whereas the signal:noise ratio of Ca(I) increased from 22 to 30 with the addition of

NaCl. The same increase was seen with the addition of 254 ppm NaCl and 25,400

ppm NaCl. In atomic emission, adding an easily ionizable element, for example Na,

can suppress ionization of other elements. This suggests that ionization suppression

by Na increases the Ca(I) emission relative to the Ca(II) lines. No intensity change

was seen for Mn(I) (403 nm unresolvable triplet) or K(I) (766.491 nm and 769.897

nm). However, since only atomic lines were detectable for Mn and K, the relative

increase of atomic to ionic lines could not be compared.

These two outcomes (enhancement of the signal or no change to the signal) suggest

that the high NaCl concentration in the ocean will not have a deleterious effect on

the ability to detect Ca, Mn, and K analytes. It also suggests that further work is
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Figure 2-11: Detection of Ca (422.673 nin) in a simulated vent fluid at varying )res-

sures and concentrations. 0= 7 x 10 ' Pa, A = 7 x 10 ( Pa, ED = 2.76 x 107

Pa.

needed to elucidate the effect NaCl has on other analytes.

2.4.4 Detection of Calcium at Varying Concentrations

Ca was used to deterline whether increased pressure affects the liut of detection.

Five pressures ranging fron 7 x 105 Pa to 2.76 x 07 Pa were investigated at con-

centrations ranging from 10 to 5,000 ppin in a solution containing several analytes

(69 ppin Br, 10,828 ppln Na, 89 ppin Fe, 958 ppm K, 46 ppim Mn, 18,932 ppin CI

in DI water) found in hyldrothermnal vent fluids at representative concentrations (10

ppn, 25 ppm, 50 ppm, 100 ppin, 500 ppm, 1000 ppin, 5000 ppin), using the optical

configuration of Figure 2-2(b) (El = 31 inJi; E2 = 15 iJ; AT = 72 us; td = 700 us: t',

= 1 Its, = 35 pin). Figure 2-11 shows that varying concentrations of Ca are detectable

at pressure and with a minimal change in intensity, suggesting that detection limits

to the ppm level will be obtainable at high pressure.

2.4.5 Solution Temperature Effects on Calcium Spectra

To characterize the temperature effect for Ca spectra, the sample cell was placed in a

sand bath heated by a hot plate. The drainage port was removed and a thermocouple

was inserted to record the temperature of the aqueous solution. We investigated the

effect of temperature on the peak intensity of Ca(I) (422.673 nm) over the range 27

- 99'C. Once the solution reached 99C, the hot plate was turned off an( allowed

to cool. Spectra were taken repeatedly using single-pulse LIBS as the temperature

dropped. Ca line intensities were measured for a solution of 1,000 ppmI Ca and 2,540
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ppm NaCl at atmospheric pressure using a single laser pulse of 37 mJ, (td = 100 ns,

tb = 1 its, W = 35 pm), and the optical configuration shown in Figure 2-2(c). Over

this range, temperature had no effect on peak intensity.

2.5 Conclusions

An optimal range of low laser pulse energies exists for the detection of Li, Ca, Mn, K,

and Na in bulk aqueous solutions at both low and high pressures. No pressure effect

was seen on the emission intensity for Ca and Na, and an increase in intensity with

increased pressure was seen for Mn. No line broadening due to pressure was observed

for Ca, Na, or Mn emission. A low energy pulse may create a smaller, more tightly

focused plasma that forms only at the focal spot. However, for a high energy pulse,

the high energy density may cause breakdown even before the pulse reaches the focal

spot. This may allow breakdown to occur over a longer distance. In addition, plasma

shielding may occur. Further studies using imaging techniques will help to elucidate

the relationship between the laser pulse energy and the subsequent plasma that is

formed. Using the dual pulse technique for several analytes, a very short interpulse

delay resulted in the greatest emission intensity. Since this condition approaches sin-

gle pulse conditions, dual pulse LIBS may not be advantageous for some elements at

high pressure. For different gate delays at fixed pressure, laser pulse energy affects

peak intensity. The addition of NaCl enhanced the emission intensity for Ca, but had

no effect on the intensity of Mn or K peaks. Ca was detectable over a wide range

of concentrations and pressures. In addition, temperature changes below 99°C had

no noticeable effect on the emission intensity of Ca. Overall, increased pressure, the

addition of NaCl to a solution, and temperature did not inhibit detection of analytes

in solution. The results presented here suggest that LIBS is a viable technique for

in situ chemical analysis in the deep ocean and further work should be carried out to

develop LIBS into an in situ oceanographic sensor.
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Chapter 3

Analysis of laser-induced

breakdown spectroscopy (LIBS)

spectra: The case for extreme

value statistics

The work in this chapter is currently in press in Spectrochimica Acta Part B as, A.

P. M. Michel and A. D. Chave, "Analysis of laser-induced breakdown spectroscopy

(LIBS) spectra: The case for extreme value statistics."

3.1 Abstract

In most instances, laser-induced breakdown spectroscopy (LIBS) spectra are obtained

through analog accumulation of multiple shots in the spectrometer CCD. The aver-

age acquired in the CCD at a given wavelength is assumed to be a good represen-

tation of the population mean, which in turn is implicitly regarded to be the best

estimator for the central value of the distribution of the spectrum at the same wave-

length. Multiple analog accumulated spectra are taken and then in turn averaged

wavelength-by-wavelength to represent the final spectrum. In this paper, the statis-

tics of single-shot and analog accumulated LIBS spectra of both solids and liquids

were examined to evaluate whether the typically used spectrum averaging approach

is statistically defensible. At a given wavelength, LIBS spectra are typically drawn

from a Frechet extreme value distribution, and hence the mean of an ensemble of

LIBS spectra is not necessarily an optimal summary statistic. Under circumstances
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that are broadly general, the sample mean for LIBS data is statistically inconsistent

and the central limit theorem does not, apply. This result appears to be (hic to verv

high shot-to-shot plasma variability in which a very small nmmber of spectra are high

in intensity while the majority are very weak, yielding the extreme value form of the

distribution. The extreme value behavior persists when individual shots are analog

accumulated. An optimal estimator in a well-defined sense for the spectral average

at a given wavelength follows from the maximum likelihood method for the extreme

value distribution. Example spectra taken with both an Echelle and a Czerny-Turner

spectrometer are processed with this scheme to create smooth, high signal-to-noise

summary spectra. Plasma imaging was used in an attempt to visually uinderstand

the observed variability and to validate the use of extreme value statistics. The data

processing approach presented in this paper is statistically reliable and should be used

for accurate comparisons of LIBS spectra instead of arithmetic averaging on either

complete or censored data sets.

3.2 Introduction

Laser-induced breakdown spectroscopy (LIBS) is a spectrochemical technique that

has been successfully used for elemental analysis of solids, liquids, gases, and aerosols,

and is finding increasing application in basic and applied research. However, one of

the major problems that precludes more quantitative use is a lack of re)rodulcibilit.y

of spectra at a given wavelength on a shot-to-shot basis.

Dramatic peak intensity fluctuations at the shot-to-shot level, suggesting the )res-

ence of high random variability, has been noted by many LIBS researchers [1 15].

There are numerous potential causes for this, including repetitive laser piilse insta-

bility, unstable laser pulse characteristics, laser pulse-plasna interactions, lens-to-

samnple distance variation (which in turn changes the distance from the plasima to the

collection fiber), laser-material coupling, variable sample ablation, plasma position

instability, matrix effects, perturbations of the plasia due to physical and chemical

characteristics of the sample (i.e., composition, homogeneity, roughness, color, and

moisture content), scattering of light, atmospheric conditions, weak ionization of the

plasma, and non-optimal collection of plasma emission [1, 3-11, 16]. Optical insta-

bility affects the ablation process, the plasma profile, and the plasma volume [7].

Carranza and Hahn [16] suggest that above a threshold value, absorption of pulse en-

ergy by the plasma saturates, reducing variability at higher levels. A given plasima is

not completely homogeneous, and there may be property gradients due to boundary
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effects and its transient nature. Spatial variation in the position of the plasma changes

the coupling of the plasma light into the collection optics. Carranza and Hahn fur-

ther suggest that shot-to-shot variation may be reduced by using sufficient laser pulse

energy to achieve saturation and a suitable collection geometry (backscatter mode)

to minimize spatial variability. The intensity of the laser itself can fluctuate by 1-5%

[8]. However, Castle et al. simultaneously measured the analyte signal and the laser

pulse energy, and found no significant correlation, suggesting laser pulse variance has

only a minor influence on overall variability [13].

The sample type also influences variability. For aqueous samples, additional flue-

tuation can be caused by "moving breakdown" that changes the distance between

the spark and the collection fiber as the plasma moves in the solution. The plasma

typically expands along the beam path toward the laser, inducing elongate plasmas

that cavitate radially [17]. Variability in aqueous solutions can also be caused by

suspended ablated particles [2, 18] and bubbles [19] both by reducing the energy

delivered to a sample and the light transmitted to the collection optics. Bubbles,

formed when breakdown occurs, and dissolved gases can scatter or absorb incident

laser radiation [17, 19].

Lazic et al. [2] report high variability of the plasma intensity for both aqueous

solutions (including bulk water) and solid samples immersed in water. Significant

variability was not observed when high laser pulse energies were used to measure

the elemental composition of flat homogeneous solid samples. In aqueous solution,

LIBS emission was sometimes not detectable even when the maximum laser energy

was used. The lack of emission was also observed for rough inhomogeneous solids.

For flat samples, the only time no breakdown occurred was when low laser energies

were used; yet, shot-to-shot signal variability was always present. Lazic et al. [10]

reported peak intensity histograms. The distributions of these data sets are clearly

not Gaussian, and show that a very high intensity peak is a rare event, with very low

intensity occurring for the bulk of the trials.

For a solid sample, inhomogeneity, porosity, or surface rouglness can change the

distance between the focusing optics and the sample, either from prior crater for-

mnation or by changing the location of ablation. Panne et al. [12] report significant

pulse-to-pulse variation of the plasma electronic excitation temperature and electron

density from material-laser interaction for homogeneous glass samples.

Laser ablation is highly nonlinear, and even more so in aerosol samples as the

plasma may form at different positions along the beam [8]. For aerosols, the location

of the particles within the plasma volume and the focal volume of the optics con-

59



tribute to variability [14]. Schechter's [15] analysis of spectral fluctuations of aerosols

showed large shot-to-shot variability possibly caused by laser pulses hitting different

numbers of particles, particle characteristic variation (size, mass, and location), and

location variation of the plasma. Whatever the cause of observed LIBS intensity

variability, analog averaging of multiple plasma emissions, where light from numerous

laser shots is accumulated on a CCD to create a single spectrum, is an often used ex-

perimental approach in order to increase the signal and the signal-to-noise ratio in t lie

presence of shot-to-shot variability [20]. Analog averaged spectra are replicated and

the ensemble of replicates are in turn averaged to create a representative spectrum.

However, this implicitly assuines that the sample mean is a reasonable estimator for

the statistical average, and this condition may not hold for soie non-Gaussian dis-

tributions.

LIBS researchers have recognized the potential impact, of intensity variability,

and have devised a variety of methods to reduce the effect of spectral variability.

Schechter used a rejection algorithm to eliminate anomalous spectra (e.g.. spectra

with no elemental lines, spectra with a too weak or too intense baseline due to laser

fluctuations, and weak spectra) from the ensemble. This typically removel 75(4 of

measured spectra [15]. Carranza and Hahn [16] used a sorting algorithm to remove

irregular spectra, eliminating 60-70% of single shot data. Lazic et al. [21 removed

spectra below a threshold value to increase the signal-to-noise ratio and imake einis-

sion lines more readily visible.

In the present work, rather than using an ad hoc approach, the statistical vari-

ability of LIBS spectral intensity has been quantified and a data processing scheme

based on the observed statistics has been devised. It will be demonstrated that LIBS

intensity (whether single shot or analog averaged) typically has a Frechet extreme

value distribution, and that for the characteristic range of statistical parameters, t he

distribution may not, possess a variance. As a consequence, the sample mean is not

an appropriate estimator for the average intensity, the central limit theorem does not

apply, and Gaussian-based inference will be in error. Instead, a maxinim likelihood

estimator for the extreme value distribution is advocated as an alternative. The result

is illustrated using single shot and analog averaged LIBS spectra for a solid target

using one experimental set-ip and for bulk aqueous solutions using two experimental

set-ups.
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Figure 3-1: Laboratory set-up of LIBS using an Echelle spectrometer.

3.3 Experimental

3.3.1 Echelle Spectrometer Set-up

To examine te variability of LIS at shot-to-shot and analog averaged levels, the

peak intensity was examined over the 580 - 600 nin range for Na using both solid

NaCI (halite) obtained from Fisher Scientific and an aqueous NaCl solution. Solutions

were made using de-ionized water and NaCI to yield a Na concentration of 100 parts

per million (ppm, wt./vol.). The variability of intensity was measured for the solid

sample using an Echelle spectrometer and for aqueous solutions using both Echelle

and Czerny-Turner units. A dark background spectrum was initially subtracted from

all raw spectra. For the halite specimen, 100 single shot and 10 shot analog averaged

spectra were obtained. For the aqueous specimen, 100 single shot and 100 shot analog

averaged spectra were collected.

The first experimental set-up utilizing an Echelle spectrometer (LLA Echelle ESA

3000) is shown in Figure 3-1. The spectrometer is capable of detecting elements over

the 200 - 780 nm range with a spectral resolution of 10 to 50 pm. A Big Sky CFR-

200 Nd:YAG laser (7.5-ns pulse width) operated at the fundamental wavelength of

1064 nm with a repetition rate of 5 Hz was used for plasma excitation. The laser is

equipped with a variable attenuator controlled by a computer that allows laser pulse

energy to range from 0 to 200 mJ in increments of <1 mJ. A timing box (Berkeley

Nucleonics Corporation Model 565) was used to accurately control firing of the laser

in relation to turn-on of the spectrometer.

For liquid samples, a cubic titanium sample chamber (8.89 cm x 8.89 cmi x 8.89

cm) equipped with two sapphire windows (Meller Optics - 2.54 cm diameter x 0.64

cm thick, AR coated at 1064 nm, custom part) that allows laser pulses to enter the

cell and the plasma to be imaged from the side of the cell (orthogonal to the entering

laser beam) was used. AR-coated optics focus the laser beam into the chamber. For
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solid samples, the chamber was removed and the final focusing lens was placed iii
front of the sample. Additional optics were used to focus the plasma light onto al

optical fiber that delivers it to the spectrometer. Data were collected using ESAWIN
software. All spectra were taken with a pulse energy of 80 iiJ and the maxinmn

MCP amplification of 4000. For aqueous NaCl solutions, the gate delay = 75 ns and

gate width = 200 us. For halite samples, the gate delay = 10,000 ns and gate width

= 100 ns.
Plasma images were taken using a Pixelfly caniera with a nmicroscope lens and

aii iris diaphragm. The inages were taken through the sapphire window on the

pressure chamber, orthogonal to the incoming laser pulses (80 inJ/pulse). The shutter
remained open for 5 its and was externally synched to the Q-switch of the laser.

3.3.2 Czerny-Turner Spectrometer Set-up

The second set-up used a Czerny-Turner spectrometer and is shown in Figure 3-2. A
Continuum Surelite III laser (5-ns pulse width, 1064 inn, 1 Hz repetition rate) was
used for plasma excitation with a pulse energy of 81 nmJ. Laser pulses were focused
into a chanber constructed of stainless steel Swagelok fittings with six 2.54 cm-ID

and 3.18 cmi-OD ports. Two ports were fitted with 2.54 cii dianmeter, 0.32 cill thick
circular sapphire windows (MSW100/125, Meller Optics Incorporated) held in place

by hex nuts and sealed with rubber washers, allowing 1.91 ciii of each window to
be visible outside the cell. The plasma emission was focused onto a 2-nun-core-

diameter, 0.51-N.A. light guide (Edmund Scientific Co. Model 02551). The light
guide was connected to a 0.25-m, f/4 spectrograph (Chromex model 250is/RF) with

a 1200-groove/mn grating blazed at 500 nm. Data were collected on an intensified
CCD detector (Princeton Instruments, I-Max 1024E) and acquired with a computer
running WinSpec/32 software.

All spectra were taken at the maximum gain setting of 255, with gate delay = 175

ns and gate width = 200 ns. Solutions were made using de-ionized water, MnSO 4,
ZnBr 2 , and NaSO 4 . The solution contained 5000 parts per million (ppim, wt./vol.)

Mn, 5000 ppm Zn, and 2000 ppm Na.
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Figure 3-2: Laboratory set-up of LIBS using a Czerny-Turner spectrometer.

3.4 Results and Discussion

3.4.1 The Generalized Extreme Value Distribution

Extreme value distributions describe the stochastic behavior of the maximum or miii-

imum of independent and identically distributed random variables drawn from sonic

parent distribution. There are three types of extreme value distributions: Weibull,

Gumbel, and Frechet. The von Mises-Jenkinson or generalized extreme value dis-

tribution (GEVD) combines the three into a single functional form [21, 22[. The

probability density function for the GEVD is given by

f(xlk, p, a)-(1)exp(-(1 k + k(x -))() + k -o (3.1)

where the distribution is Weibull, Gumbel and Frechet for the shape parameter k<O,

k=O, and k>O, respectively. The remaining parameters in Equation 3.1 are the loca-

tion parameter p (analogous to the mean for the Gaussian distribution) and the scale

parameter a (analogous to the standard deviation for the Gaussian distribution). The

Gumbel distribution is obtained through an appropriate limiting process, but is not

of interest in the present work. For the Weibull and Frechet distributions, the range

of the variate is respectively -oo<x<t-a/k and p-o/k<x<oc. The Weibull distribu-

tion has a finite upper endpoint and hence corresponds to a short-tailed parent. The

63



Frechet distribution has a polynomially decreasing upper tail and corresponds to a

long-tailed parent.

As will subsequently be shown, LIBS intensities arc typically distributed as Frechet

extreme value. It is important to note that the second and higher order moments

(and hence the variance) do not exist for k>1/2, ail the first moment (the mean)

does not exist for k>l. This implies that the standard estimator for the ensemble

average, the sample mnean. will either be inconsistent (i.e.. will not display a reduced

variance as the size of the sample increases) for A:> 1/2 or will not exist at all for k> 1.

A different fornmulation is required to obtain the three parameters in Equation 3.1 so

that defensible statistical inferences about LIBS intensities can be nade. A standard

approach is the inaxinun likelihood method that seeks the solutions for A, it and (7

that maxinize tile joint distribution of a given set of data, or the likelihood function.

For indepen(dent samples, the joint distribution of N data is the )roduct of Equation

3.1 for each datuin with conmnion shape. location and scale parameters

N

L(k,,IL. (71i) J7(i)exp(-(1 + A:X - )-)(1 + A - )_,_ (3.2)21

This is imaximnized by setting the first derivative of Equation 3.2, or its logarithm, for

each parameter to zero, yielding a set of three equations

16 NA(x - P) _(- k) +lI

-(I + ) + = 0 (3.3)
T+ 

(7

1N 
N

[E log(1 + k-' k((l +k)Z k x
i i Ii

pi _____i 1 1
ky:(I + ,( ,)) 0 (3.4)

k,3.l

-m k 1A.(3(3-5)(

These are coupled and nonlinear, and must be solved iteratively for the mnaximunI

likelihood estimators (Oles) k, A and & using an appropriate algorithm. For the

GEVD, the niles are asymptotically efficient (loosely speaking, highly concentrated

about the true value for large nunbers of data), normal and unbiased, but are nei-
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ther unbiased nor fully efficient for finite samples. However, neither is the sample

mean when the second and higher moments do not exist. The mles have the distinct

advantage of being defined when the moments of the distribution do not exist, and

are relatively easy to compute. Presuming that the extreme value distribution is a

good fit to LIBS intensity data, the maximum likelihood estimate for the location

parameter t is a good representation of the peak intensity at a given wavelength, and

the scale parameter & and asymptotic normality can be used to compute approximate

confidence intervals on f.

3.4.2 Applicability of Extreme Value Statistics

Quantile-quantile (q-q) plots will be used to demonstrate that LIBS intensities are

typically distributed as the Frechet extreme value distribution. The N quantiles of

a target distribution are the abscissa values that divide the area under the pdf into

N+I equal probability intervals. They are easily obtained from the pdf by solving

for Qj in

f(x)dx N 2 (3.6)

where j=l,...,N. The order statistics of the intensity data are obtained by sorting

them into ascending order. The order statistics divide the area under the target pdf

into intervals that will correspond to equal probability if the data are drawn from

it, and hence a plot of the quantiles against the order statistics will be a straight

line. Systematic departures of the data from the distribution are visible as changes

in slope, and anomalous values or outliers are manifest at the extremes, and hence a

q-q plot is a useful qualitative tool to assess the suitability of the target distribution

as a statistical model.

The fit may be quantified by testing the null hypothesis that the data are drawn

from the target distribution against the alternate hypothesis that they are not using

the nonparametric Kolmogorov-Smirnov statistic [23] that compares the empirical

and target cumulative distribution functions. The Komogorov-Smirnov test statistic

may be assessed at the standard 0.95 level for which the critical value is 0.134 for 100

realizations, as were used throughout this work. The null hypothesis is rejected if the

test statistic exceeds the critical value.

Figure 3-3 shows q-q plots for the 588.9953 nm Na I peak for single shot and 10

shot analog accumulations on halite using the Echelle set-up. Both are approximately

straight, and both accept the null hypothesis that the extreme value distribution is

correct (Kolmogorov-Smirnov test statistics of 0.067 and 0.066, respectively). Figure
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3-4 shows q-q plots at the same wavelength for single shot and 100 shot analog

accunulations for Na in bulk aqueous solution using the Eclielle set-up. The single

shot data exhibit, a shift in slope that reflects the fact that the vast majority of the

data correspond to no signal, andl hence are only instrument noise. The 100 shot

analog accumulations are slightly short-tailed at the upper end. Nevertheless. both

pass the Kohnogorov-Sinirnov test with test statistics of 0.113 and 0.098. respectively.

Figure 3-5 compares q-q plots at the same peak for single shot and 100 shot analog

accumulations using the Czerny-Turner set up with a bulk aqueous target. Both are

slightly short tailed at the top of the distribution, but both accept the null hypothesis

that the data are extreme value (Kohnogorov-Sinirnov test statistics of 0.084 and

0.058, respectively). Similar results are observed for the 589.5923 un Na peak (not

shown), or at. other wavelengths where signal is present. Further, the shape parameter'

persistently lies in the region corresponding to the Frechet, extreme value (list ribution,

and ini many instances exceeds 0.5 so that the variance does not exist.

66



6000

5000

4000

3000

2000
0

1000

-00oo 0 500 1000 1500 2000 2500

Extreme Value Quantile

(a) Single Shot

8000 -

7000

6000

5000-

4000 U

20
0) 3000- o

2000 -

1000 dp

0/ __i_ _

0 2000 4000 6000 8000 10000
Extreme Value Quantile

(b) 10 Shot Accumulations

Figure 3-3: q-q plots for the 588.9953 nm Na I peak for halite using the Echelle set-up
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3.4.3 Extreme Value Statistical Parameters

As a demonstration of the importance of using an a))ropriate set of statist ical esti-

mnators for LIBS intensity data, the extreme value niles and the saln)le mean were

computed over the wavelength band 578.5 - 605.9 inn for the halite and aqueous Na

salnples using both the Echelle and Czerny-Turner set-ul)s. At each wavelength. 100

realizations of 10 (halite) or 100 (aqueous samples) analog-accuiulated shots serve

as the data from which the inles (Equations 3.3 - 3.5) and tile sainple imean are

estimated.

Figure 3-6 compares the shape parameter, the locat ion parameter, and the sample

inean for halite using the Echelle set-ut). While there is wavelength-l)v-wav(engthi

statistical variability, the shape parameter is persistently above the 0.5 threshol(l

beyond which the variance does not exist, and frequently excee(ls the 1.0 threshold

bevond which the mean (loes not exist, especially in the vicinity of the 589 inn Na

doublet and over two bands slightly above 600 nut. The extreme value location parmil-

eter produces a smooth representation of the LIBS spectruim with linited statistic(al

varia)ility that is consistent with the number of samples. BY contrast, the saimiple

mean displays substantial statistical variability with two anomalous wills aii(n the Na

doublet band. These correspond to the wavelengths where the shape laramineter (dip

below 1.0, so that the mean becomes defined. For data that are loig-tailed, such as

those drawn fron a Frechet extreme value distribution, the sample iieai will be (domi-

inated by a few large values. This results both in the large wavetengtli-to-waveleiigt Ih

variability that is apparent in the sample mean and the substantial (ifferelnce in an-

plitude between the sani)le mean and the location parameter. it addition, tw( large

peaks are observed above 600 nmn that, are barely visible in tile extreme value locatiO(n

parameter. These correspond to peaks well above 1.0 in the shape Iaraineter where

the extreme value dist ribution is very long-tailed. and serve as gralphic illustration of

the sort of erroneous conclusions that caii be derived through use of inappropriate

statistical estimators.

Figure 3-7 compares the shape parameter, the location parameter, and the samn)le

mean for Na in bulk aqueous solution using the Echelle set-up. The shape paramleter

is inuch more uniform with wavelength than for halite (Figure 3-6), butl persistelntly

lies around 0.75 where the variance does not exist. As a consequence, the extreilne

value location parameter displays much less variability than the sample nean, as in

Figure 3-6. Figure 3-7 is another examl)le where tile use of a stan(ard sample mean

estimator inay lead to incorrect inferences.

Figure 3-8 compares the shape parameter, the location paranmeter, and the samiple
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mean for Na in bulk aqueous solution using the Czerny-Turner set-up. In contrast

to the results with the Echelle set-up, the shape parameter is persistently below 0.5,

and displays occasional excursions below 0 where the distribution is Weibull. Since

both the mean and variance exist throughout the wavelength domain, the extreme

value location parameter and the sample mean yield qualitatively similar results.

However, the distribution remains extreme value rather than simple Gaussian, and

the uncertainty inferred for the sample mean will be inaccurate.

While LIBS intensity data (whether single shot or analog accumulated) empiri-

cally appear to persistently be drawn from an extreme value distribution, systematic

differences are observed between different experimental set-ups. Whether this is due

to the spectrometer or laser design, the experimental geometry, the element under

study or some other factor remains unknown. Since incorrect conclusions might be

drawn from the use of an inappropriate statistical model, it is strongly urged that

LIBS practitioners examine their data to determine the correct approach for each

set-up and sample.
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Figure 3-6: Shape parameter, location parameter, and sample mean for halite using
the Echelle set-up
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solution using the Echelle set-up
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3.4.4 Variability

In an attempt to understand the source of data variability, images of plasmas in liquids

were taken and the energies of numerous single shot laser pulses were compared.

Figure 3-9 shows three sample plasma images taken under the same conditions that

visually demonstrates the significant variability of plasma formation. The images are

time averaged over 5 pts. Although hundreds of plasma images were taken, these

images were selected to illustrate the variation in intensity, size, and location of

formation of the plasma within a bulk liquid. The plasma shown in Figure 3-9(c)

displays significantly greater emission intensity and size than those in (a) and (b),

illustrating the extreme nature of some plasmas. In contrast, the plasma in Figure 3-

9(b) is very weak, with very little emission produced. The distinct differences shown

between these three plasmas is a clear indication that on a shot-to-shot basis that

plasma variability exists and that extreme plasmas are formed which could account

for the extreme intensities recorded.

The energy of 500 laser pulses was measured to examine the contribution of laser

pulse energy fluctuations to plasma variability. Figure 3-10 shows that shot-to-shot

pulse energy fluctuations do exist; however, the variability is not extreme in nature,

suggesting that laser pulse energy variation is riot the dominant cause of plasma and

peak intensity variations. This suggests that the variability of the plasma formation

is due to other effects.
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(a) Plasma Image 1

(b) Plasma Image 2

(c) Plasma Image 3

Figure 3-9: Images of plasmas formed in bulk aqueous solution that illustrate the
shot-to-shot variability of formation. Images were taken orthogonal to the incoming
laser beam. In the images shown, the beam enters from the left. Plasmas were formed
using 80 mJ of laser pulse energy.
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Figure 3-10: Comparison of laser energies measured for 500 individual laser pulses.
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3.5 Conclusions

Examination of the variability of peak intensity for both single shot and analog ac-

cumulated LIBS spectra reveals that such data are drawn from an extreme value

distribution. In many instances, the distribution has no variance, and in some cases

the mean is also undefined. Under either circumstance, the use of the sample mean or

variants that include censoring will be statistically inconsistent and the central limit

theorem will not apply. A maximum likelihood estimator data processing scheme is

presented that accurately deals with the extreme value nature of laser-induced plasnia

formation. It is strongly urged that this approach be used to ensure accurate scien-

tific inference from LIBS data, and that use of estimators based on the sample mean

be discontinued. Plasma images reveal large spatial and intensity differences on a

shot-to-shot basis. Laser pulse energy fluctuations are shown to contribute to the

variability but are not the primary source.
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Chapter 4

Single pulse laser-induced

breakdown spectroscopy of bulk

aqueous solutions at oceanic

pressures: Interrelationship of gate

delay and pulse energy

4.1 Abstract

The ability to make sustained measurements of ocean processes is limited by the

number of sensors that are usable for long-term in situ analysis. In recent years,

laser-induced breakdown spectroscopy (LIBS) has been identified as a viable technique

for development into an oceanic chemical sensor. In this paper, single pulsed laser-

induced breakdown spectroscopy of high pressure bulk aqueous solutions is used to

detect three analytes (sodium, manganese, and calcium) which are of key importance

in hydrothermal vent fluids, an ocean environment that would greatly benefit from the

development of an oceanic LIBS sensor. The interrelationship of the key experimental

parameters, pulse energy and gate delay, for a range of pressures up to 2.76 x 107 Pa,

are studied. A minimal effect of pressure on the peak intensity is observed. A short

gate delay (less than 200 ns) must be used at all pressures. The need for a relatively

low laser pulse energy (less than - 60 mJ) for optimal detection of analytes at high

pressure is also estabilshed. Na, Mn, and Ca are detectable at pressures up to 2.76 x

107 Pa at 50 ppm, 500 ppm, and 50 ppm, respectively, using an Echelle spectrometer.
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4.2 Introduction

New chemical sensors are nee(de(d for use in process studies, and are of critical im-

portance as oceanography shits to a new operational node using permanent ocean

observatories. New sensors take significant tiie to develop and transform froin bench-

top laboratory prototypes to ocean-going systems. The develo)ment phase requires

validation that an analytical technique will work under in situ conditions.

LIBS is a type of atomic emission spectroscopy that has been identified as a viable

technique for use as a field-going sensor for geochemical and environmental sensing

[1]. For example, a new mobile instrument has been developed for evaluating polluted

soils [2, 3]. Palanco ct al. have proposed a field deployable laser-in(duced breakdown

spectrometer system for stand-off measurements at hundreds of meters range [4].
Several groups have investigated LIBS for space exploration [5 10]. Courr{'ges-Lacost,

ct al. [7] are (eveloping a combinied Raman/LIBS instrument for investigating past

and )resent life on Mars. Arp ct al. [6] have investigated the use of LIBS in the high

temperature (>700K), high pressure (order of 9 x 101 Pa) environment of Venus.

Another proposed in situ application of LIBS is its (evelo)nent into an oceanic

chenical sensor.

One ocean environment that would benefit greatly from the development of such a

sensor is hydrothernial vents that occur at mid-ocean ridges where seawater circulates

through the permeable ocean crust. As seawater moves through the crust, the fluid

interacts with the surrounding rock, inducing major chemical changes to the rock and

the fluid. At vent orifices, exit temperatures reach 200 - 405"C at ambient pressures

of 8.1 x 106 Pa to 3.6 x 10' Pa corresponding to ocean depths of 800 in to 3600

in [11]. In situ chemical measurement of the fluids is difficult due to the corrosive

nature of the vent environment and irreversible changes in composition that occur

when they are removed to the surface. Three elements of importance in vent fluids

are sodium, calcium, and manganese. Sodium is the most abundant cation in vent

fluids and can be studied to understand phase separation processes [12]. Malnganese

exists as a trace imetal in seawater but is leached from the host rock making it present

at higher concentrations in vent fluids [12]. When measured sinmltaneously with Fe.

Mn can be used as an indication of subsurface deposition as Fe precipitates out while

Mn stays in solution. Calcium is the second most abundant cation in vent fluids, and

is typically enriched in vent fluids, when compared to seawater [13]. Ca is released

into vent fluids when sodium is taken up during albitization reactions with the host

rock. In vent fluids, concentrations range from approximately 250 - 23,163 ppin for
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Na, 0.6 - 399 ppm for Mn, and -54 - 4477 ppm for Ca [11]. In seawater, concentrations

are approximately 10,933 ppm Na, <0.001 ppm Mn, and 419 ppm Ca [11].

There is limited prior work on the study of dissolved analytes within bulk aqueous

solutions [14-20] due to inherent difficulties in detection. The plasma formed in a

bulk liquid displays reduced light intensity and a reduction in emission lifetime due

to quenching [14, 15, 21, 22]. In addition, spectral lines are broadened through the

Stark effect [14]. Furthermore, "moving breakdown" occurs that randomly changes

the distance between the plasma and the collection optics, a phenomenon that is not

important for solids in air. The plasma expands along the beam path of the laser,

resulting in an elongated plasma that cavitates cylindrically [23]. For many aqueous

applications, these issues can be avoided by analysis on a liquid surface, jet. or film;

however, for the development of an in situ oceanic system, it is necessary to work

directly with bulk liquids.

Although we have previously reported on the successful use of LIBS for detection of

bulk aqueous analytes at high pressure (up to 2.76 x 107 Pa) [17 19], the development

of LIBS into an oceanic chemical sensor requires the optimization of the experimental

system to maximize the signal-to-background ratio (SBR) of the spectra, and improve

the limit of detection. In this work, a comprehensive study of the effect of the two

key parameters for single pulse LIBS on SBR was completed. Peak intensities were

measured to determine optimal conditions for the detection of Na, Ca, and Mn at high

pressure. Subsequently, calibration curves were constructed to estimate the limits of

detection using an Echelle spectrometer.

4.3 Experimental

The laboratory set-up for simulating a LIBS sensor in the deep ocean is depicted

in Figure 4-1. Plasma formation is induced with a Big Sky CFR-200 Nd:YAG laser

operated at 1064 nm with a 5 Hz repetition rate. The laser is equipped with a
motorized variable attenuator, serially controlled by a computer, enabling the laser

pulse energy (E) to be varied from 0 mJ to 200 mJ in increments of approximately

1 mJ. Plasma emission is collected with an Echelle spectrometer (LLA Echelle ESA

3000) capable of detecting wavelengths of 200 - 780 nm with a spectral resolution of

10 - 50 pm. Timing control of the laser and turn-on of the spectrometer is managed

by a timing box (Berkeley Nucleonics Corporation Model 565). The LIBS timing

parameters are gate delay (td, the time between the laser pulse and turn-on of the

spectrometer) and gate width (tb, the integration time of the spectrometer), both
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Figure 4-1: LIBS laboratory set-up

shown in Figure 4-2.

An 8.89 cm x 8.89 cin x 8.89 ciii titanium sample chamber that holds 27 n1l

of liquid is connected to a high pressure metering pump (Eldex Model A-30-S) that

is used to pressurize samples to 4.1 x 107 Pa. The sample chamber is equipped

with a sapphire window (Meller Optics, 2.54 ci diameter x 0.64 cm thickness. An-
coated at 532 ntn/1064 nm, custom part) that enables laser pulses to enter the sample

chamber. A series of AR-coated optics are used to focus the laser beam into the sample

chamber (Figure 4-3), with the final focusing lens fit into the sample chamber. Ail

additional lens is used to focus the plasna light onto ail optical fiber and delivers it
to the Echelle spectrometer (Figure 4-3). The plasma light is collected collinear to

the incoming laser beam. This optical geometry was selected because it is the only

practical configuration for an ocean-going LIBS system. Data were collected using

ESAWIN software. Laser energy is measured using a laser energy sensor (Coherent

J25LP-MB) combined with an energy meter (Coherent FieldMaxIl-Top).

To determine optimal conditions for the detection of the three analytes, spectral

intensities were measured over a range of LIBS system parameters. For Na and Mn,

detailed studies were conducted at five pressures (1 x 105 Pa, 6.89 x 106 Pa, 1.38 x

10' Pa, 2.07 x 107 Pa, and 2.76 x 107 Pa). For Ca, the studies were conducted at

three pressures (1 x 105 Pa, 1.38 x 107 Pa, and 2.76 x 107 Pa). Tile gate delay and

laser pulse energy were systematically varied to determine their effect on both plasma

intensity and SBR. Five spectra were taken for each parameter pair, each composed

of 100 accumulated shots. The laser pulse energy ranged from 10 to 170 mJ in 10 mnJ

increments. Laser beam waist width d,o can be estimated from

4f AM2

d° - 7rD (4.1)

where f is the focal length of the focusing lens (35 min), A is the laser wavelength
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td tb

E = Laser pulse energy
td = Gate delay (length of time between the laser pulse

and the spectrometer turning on)
tb = Gate width (length of time the spectrometer

remains on)

Figure 4-2: Timing parameters

MM

L. 3

Figure 4-3: Optical Configuration. M, - 25 mm diameter 1064 nm Nd:YAG mirror;
L, = 12 mm x -12 mm lens; L2 = 25 mm x 50 mm lens; M2 = 50 mm diameter 1064
nm Nd:YAG mirror; L3 = 25 mm x 35 mm lens; FO = Fiber Optic

85



(1064 rn), N12 is the beam propagation ratio which is typically 2 - 10 for Nd:YAG

lasers (we therefore choose a value of 6), and D is the dianieter of the illinuated

aperture of the focusing lens (- 25 min) [24]. The beam waist width for the system

is approximately 0.07 m. The average irradiance (I,f) at the beam waist is

Wr L7L 1)2(

-4TJ.*2 A2 ' (42)

where EL is the laser pulse energy and 71, (= 7.5 ns) is the pulse duration at the full

peak width at half of the maximumn intensity (FWHM) [241. The pulse energy was

varied between 10 - 170 inJ resulting in variation of irradiance at the beamn waist from

1.31 x 1012 to 2.23 x 1013 W/Cl 2 . The gate delay was 50, 75. 100. 125. 150, 200.

300, and 500 ns. Each combination of energy aid gate delay was tested, resulting iII

136 different conditions for the optimization studies.

The signal-to-background ratio is

SR = 201ol o  Arn.pliude (4.3)
S Atnplit udCbackyr(ntnd (43)

where the amplitude of the background is defined as the spectral average ovcr i region

where no peaks are expected. The background was (alculated for Na by using the

spectral region 200 nn to 500 uin and for Mn and Ca by using the spectral regioi

430 In to 530 min.

Calibration curves were made for Na, Ca. and Mn with ten spectra being taken at

each concentration, each composed of 100 aceunulated shots. The experimentation

conditions used for the calibration curves are detailed in Table 4.1.

Table 4.1: Calibration curve conditions

Analyte Concentrations Tested (ppm) E (inJ) td (us)
Na 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000 40 50
Mn 1, 5, 10, 50, 100, 500, 1000 30 50
Ca 1, 5, 10, 50, 100, 500, 1000 30 50

For all experiments, the gate width was held constant at 200 us. In addition, the

amplification of the Echelle spectrometer was set to the maximum value of 4000.

All raw spectra were processed using extreme value distribution statistics detailed

in a paper by Michel and Chave [25]. Data fromr 9 wavelengths were grouped for

processing. Where shown, error bars represent the double sided 957c confidence linits

[25].
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Solutions were made from NaCl, MnSO 4.H20, and CaC12.2H 20 dissolved in de-

ionized water for the Na, Mn, and Ca studies, respectively. All concentrations are

given in parts per million (ppm, wt./vol.).

4.4 Results and Discussion

4.4.1 Sodium

The interrelationship of gate delay and laser pulse energy for sodiun was studied using

a concentration of 100 ppm. The intensities of the 588.995 nni and 589.6 in Na peaks

were measured, and are shown in Figures 4-4 and 4-5. As pressure rises, an increase

in signal intensity is observed with the maximum peak intensity present at 2.76 x 107

Pa. An examination of these figures shows that the greatest peak intensity exists at

the shortest gate delay. As td increases, peak intensity decreases, independent of both

the laser pulse energy and ambient pressure. The data variability present in the plots

is indicative of significant plasma variability. Overall, there appears to be little effect

of energy on intensity. Examination of the SBR provides important information for

selecting optimal parameters. Figures 4-6 and 4-7 detail the interrelationship of td,
energy, and SBR. A smaller td tends to exhibit a higher SBR due to a stronger signal,

as seen in Figures 4-4 and 4-5. Furthermore, Figure 4-4 suggests that a lower energy

pulse consistently provides a higher SBR. As pressure increases, the SBR again tends

to increase. The data suggest that the highest SBR exists when a low energy pulse

(20 - 60 nlJ) and a relatively small td are used (50 - 150 us). As first reported in

Michel et al. [17], this suggests that an optimal range of laser energies exists that

tend to be relatively low.

For the best SBB, a pulse energy of 40 mJ and a gate delay of 50 ns were identified

for detection of Na over a range of pressures and spectra of this condition are plotted in

Figure 4-8. Calibration curves for sodium were constructed to determine the limit of

detection (Figure 4-9). These suggest that sodium can be detected at a concentration

of approximately 50 ppm using the present apparatus. Spectra of the Na calibration

data are shown in Figure 4-10 that illustrate that 50 ppm is the lowest concentration

where Na is detectable.
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Figure 4-8: Spectra of Na (588.995 nni and 589.6 rn) taken with a pulse energy of
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4.4.2 Manganese

The effect of laser pulse energy and gate delay on spectra for manganese were studied

using a concentration of 1000 ppm Mn over a range of pressures. Although a Mn

triplet exists at 403 nn, peak broadening in liquids causes it to be unresolvable, and

therefore we report a single 403 nm peak. The interrelationship of pressure, gate

delay, energy, and intensity are shown in Figure 4-11. As pressure increases, peak

intensity also rises. A similar finding was reported by Michel et al. under a single

tested condition (single E and td) [17]. Figure 4-11 shows that irrespective of gate

delay and energy the peak intensity of Mn increases with pressure. Mn also exhibits

a higher peak intensity at a lower laser pulse energy at a shorter td. When the

corresponding SBR plots are examined (Figure 4-12), SBR is shown to be smallest

at the lowest pressure (1 x 105 Pa). Again, the need for a short td and a low E is

evident.

From the optimization studies, an energy of 30 mJ with a gate delay of 50 us was

selected as a condition that would provide good detection of Mn over a [)road range

of pressures. The selected condition is plotted at all five pressure conditions in Figure

4-13. To determine the limit of detection of Mn, a calibration curve was constructed

using 30 mJ and td of 50 ns (Figure 4-14). Figure 4-15 shows spectra made at these

conditions at 2.76 x 107 Pa over a range of concentrations. The limit of detection

was found to be 500 ppm which is higher than the concentration found in vent fluids.
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4.4.3 Calcium

Three calcium peaks, 393 nm (ionic), 396 nm (ionic) and 422 n1 (atomic), were

studied. The interrelationship of the measurement parameters of Ca were determined

and are shown in Figures 4-16 to 4-21. The importance of a short td is evident when

SBR is examined (Figures 4-19 to 4-21). Although three calcium peaks are detectable,

the 422 inn peak is the strongest, and therefore the selection of an optimal condition

was based on this peak. A laser energy pulse of 30 mJ with a gate delay of 50 us
was selected as the optimal condition for detection of Ca, and spectra illustrating

this condition are shown in Figure 4-22. Calcium calibration curves were constructed

using these conditions and are shown in Figure 4-23 for both the 393 mu and the 422

nr peaks. These suggest the limit of detection for Ca is 50 ppm using the present

apparatus. Spectra for selected concentrations are illustrated in Figure 4-24.
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Figure 4-16: Interrelationship of pressure, td, E, and intensity for Ca (393 nm) (a) 1
x 105 Pa (b) 1.38 x 107 Pa (c) 2.76 x 107 Pa
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4.5 Conclusions

Sodium, manganese, and calcium are all detectable in high pressure, bulk aqueous

solutions using single pulse LIBS with little effect of pressure on the s)ectra. This

comprehensive study of the interrelationship of gate delay and energy for selecting

the optinial condition for detection of these analytes has shown that, irrespective of

the laser pulse energy selected, the gate delay should be very short (less than 200 ns)

fbr the detection of analytes in bulk aqueous solutions. The need for a short gate

delay is independent of pressure. This study has also shown that a low energy pulse

(less than ; 60 miJ) is optimal.

Calibration curves were made to determine limits of detection using the clrrent

system set-up and further work is needed to look at reproducibility of the actual

curves. Calibration curves show that Na, Mn, and Ca can be detected at 50 ppln, 500

ppn, and 50 ppm, respectively. The calibration curves also demonstrate a minimal

effect of pressure on spectra. However, the limits of detection were higher than

expected. With the current LIBS set-up, the detection limits of Na and Ca are below

the levels found in vent fluids. However, Mn would not be detectable. This can be

attributed to the low light throughput of the f110 Echelle system. To significantlY

improve the light throughput, it would be advisable to use a spectromneter with a

smaller f number. For example, using a, spectrometer with an f number of 2 could

improve the throughput l)y a factor of approximately 25 and therefore improve the

ability to detect Na, Nm, and Ca in high pressure aqueous environments. For example,

with the use of a, PMT as the detector, Cremers et al. [14] showed st)stantiallY

improved detection limits for )ulk liquids for Na I (589.00 nin) at a level of 0.01.1

p)) and Ca II (393.37 nin) at a level of 0.8 ppm. Therefore, additional work is

necessary to optimize the light collection by changing the system components.
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Chapter 5

Double pulse laser-induced

breakdown spectroscopy of bulk

aqueous solutions at oceanic

pressures: Interrelationship of gate

delay, pulse energies, interpulse

delay, and pressure

5.1 Abstract

Laser-induced breakdown spectroscopy (LIBS) has been identified as an analytical

chemistry technique suitable for field use. Mid-ocean ridge hydrothermal vents would

greatly benefit from the development of an in situ LIBS sensor. In this paper, double

pulse laser-induced breakdown spectroscopy is used to detect five analytes (sodium,

manganese, calcium, magnesium, and potassium) that are of key importance in un-

derstanding the chemistry of hydrothermal vent fluids, and of mixtures of vent fluids

and seawater. The high pressure aqueous environment of the deep ocean is simulated

in the laboratory and the key double pulse experimental parameters (laser pulse en-

ergies, gate delay, and interpulse delay) are studied at pressures up to 2.76 x 107 Pa.

Each element is found to have a unique optimal set of parameters for detection, and

the elements are not detectable outside of the set. For all pressures and energies, a

short (<100 ns) gate delay is necessary. As pressure increases, a shorter interpulse
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delay is needed and the conditions effectively become single pulse. Calibration curves

reveal the limits of detection of the elements (5000 ppn Mg, 500 p)i K, 500 ppli

Ca, 1000 ppin Mn, and 50 ppm Na). When compared to our previous single Iulse

work for Ca, Mn. and Na, double pulse LIBS for high pressure aqueous solutions (ti(t

not improve the limits of detection.

5.2 Introduction

Laser-induced breakdown spectroscopy (LIBS) has recently 1)eii identified as an an-

alytical chemistry technique suitable for field deployment for the analysis of eiiviroli-

mental and geochemical samples [1]. Several groups are evaluating the use of LIBS for

space exploration [2 7]. Another environmental area in which there is a critical need

for new sensors is the ocean. Sensor development for use with underwater vehicles is

ongoing and a more requirement is for sensors to be develo)ed for use oIL )erinimnt

ocean observatories.

One environment identified as potentially benefitting from application of an occanic

LIBS sensor is the deep-sea hydrotherinal vent enviromnent. Hydrothermal vents oc-

cur at mid-ocean ridges where seawater circulates through the perineatble oceami crust,

allowing the fluid to interact with the surrounding rock and resulting iii major flui(d

chemical changes. At vent orifices, exit temperatures reach 200 - 405"C at ambient

pressures of 8.1 x 10(  Pa to 3.6 x 107 Pa correspondhing to ocean depthis of 800 in to

3600 ii [8].

At hydrothermal vents, as the hot fluids inix with seawater, rapid cheinica changes

occur and some elements )recipitate out (e.g., sulfate minerals [9]). Obtaining ig'n siti

chemical measurements of the fluid is difficult due to the corrosive nature and high

tem)erature of the fluid. Collection of the fluid for analysis shipboard or in a lab-

oratory introduces chemical changes as the temperature an(t pressure of the flui(d is

changed during sample recovery. Five critical elements atl hydrothernial vents are

sodium, calciui, manganese, magnesium, and potassium. Sodium is the (homiiiiant

cation ii vent fluids, and provides insight into phase separation processes [10]. Cal-

ciunm is the second iost dominant cation in vent fluids, and is usually found at a

greater concentration in vent fluids than seawater [11]. Ca is released into vent, fluids

when Na is taken up in albitization reactions with the host rock [11]. Manganese

exists as a trace metal in seawater but has a higher concentration iii vent fluids due

to leaching from the host, rock [10]. Magnesiurn is practically nonexistent in liN-

drothermnal vent fluids; however, if any is detected in vent fluids, contanination b)y
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entrainment of ambient seawater is indicated [10]. Potassium is typically highly en-

riched in vent fluids due to leaching from basalts [10]. In vent fluids, concentrations

range from approximately 250 - 23,163 ppm for Na, 0.6 - 399 ppm for Mn, -54 - 4477

ppm for Ca, -47 - 3166 ppm for K, and 0 ppm for Mg [8]. In seawater, concentrations

are approximately 10,933 ppm Na, <0.001 Mn, 419 ppm Ca, 405 ppm K, and 1300

ppm Mg [8].

Development of an oceanic LIBS sensor necessitates laboratory investigations into

the system parameters for the detection of analytes under high pressure bulk aqueous

conditions. Although LIBS analysis of liquids is more difficult than the analysis

of solid or air samples, a few studies have focused on dissolved analytes in bulk

solutions [12-18]. Some issues for LIBS in aqueous solutions include a reduction in

plasma light intensity and emission lifetime due to quenching, the Stark effect may

cause spectral lines to be broadened, and moving breakdown can change the distance

between the plasma and the collection fiber optic [12, 13, 19-21]. The breakdown

threshold in water is also significantly greater than for solids [22]. Laser-induced

plasmas are weak in water, as they are cooled by Brenisstrahlung and shockwave

emissions, and by thermal conduction. Rapid cooling of the plasma also increases

electron-ion recombination and plasma emissions last only a few hundred nanoseconds

[23].

In 1984, Cremers et al. showed that several elements, including Na, K, Mg, and

Ca, could be identified in bulk aqueous solution using double pulse LIBS. This work,

carried out at atmospheric pressure, showed that double pulse LIBS improved the

detection limit for metals and ions in bulk aqueous solution [12]. In double pulse

LIBS for dissolved analytes, the first laser pulse produces a plasma that creates a

laser-induced cavitation bubble. The second laser pulse produces a plasma within

the bubble [23, 24]. This is in contrast to single pulse LIBS, where the plasma is

simply formed in a liquid environment. The duration of the laser-induced plasma in

the bubble is on the order of a few microseconds and the bubble lifetime is on the

order of a few hundred microseconds. Therefore, it can be assumed that the plasma

from the second pulse is expanding in a quasi-stationary environment induced by

the first laser pulse [24, 25]. When the bubble is first formed, its pressure is greater

than that of the surrounding liquid and the bubble begins to expand which leads to

a pressure drop. At the point of maximum expansion, the bubble pressure is less

than the pressure of the surrounding fluid and the bubble begins to collapse. During

this collapsing phase, the temperature and pressure in the bubble again increases

and if there is enough energy stored within the bubble, it can re-expand. Many
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such oscillations of expansioni and complressioni are possible [23]. By adjusting H ic

initerpullse dlelay between the laser pu1lses, it is possible to select, thle phase that 1 thei(

bubble is in such that, lbbble pressure is at a nadir. If the int erpulse delay is too

long or too short, the plasnia will exp)and in a high pressure environment so that, the

spectral lines will b)e broadened (hue to collisions [23]. Selection of the interpulse delaY

time therefore is critical for 1)ulk liquidls.

Sic Creiner's pioneering work, several groups have used dual pullse LIBS for the

detection of anialytes in bulk liquids [12, 14, 18, 25 -271 and inore recently for Nil1k

solutions at high p)ressuires [15, 16]. In Michel et al. [15], it wa.s reported that analYte

dletectioni in high pressure bul1k solutions was highly dep)endlent on the interpill'sc

delay. 'When a shorter interputse (delay timie was used (K< I pes), the signal intenisitly

was enhanced compllared to when longer dlelay times were empjloyedl. However, it was

notedl that this time may not be long enough for cavitation bubbles to fully forin ando

expand(, as occurs at low p)ressure. Michel et al. also found that the o1)timnal energy

levels needed for einission seeinedl to vary b y analyte [15]. Lawrence-Snyder ct alt. [16]

rep)ort that increasing solut ion pressure reduces double puilse einission enihancemen t

so that, little imiprovement was niotedl over single pulse above I X 1I) p'la.

In Chapter 4, op)tiizat ion of single pulse condition,- for three analYtes (Na. Nhmi

and Ca) was rep)ortedl and the limits of dletection were iiot. a.t the levels that, we liad

hoped to achieve. Through optimnizat ion of the dloule ptilse set-up,) thle goal is to

imiplrove the limits of detection and, in addition, estab)lishlimiits of dletect ion for other

elements. Atlhoughi Lawrence-Snyder (et al. p)reviously reportedI on thec use, of dloublle

pullses for the detectioni of analytes at, high pressures and found no enihaiicemient s

ab)oVe I X 10'7 Pa [16], several differences exist betweeni these stud(ies. Lawrence-

Snyder ct al. report, their findings using anl orthogonial bean geoinetrv which woutl

be impiIractical for the dlevelopmnt of an oceanic sensor inin any ap)plicat ions, the

work dloes not extend( to the amibient pressures for miost, hydrotherinal vemnts. anid

optimization of laser p)ulse energies was not carriedl out. Through thle coipileti0 ii of a

thorough optimization. the use of dlouible p)ulse LIBS at pressures iij) to 2.76 x 10'7 P-a

is flow investigatedl aiid the limits of dletection for five key elements are (determinled.

5.3 Experimental

Double pullse high pressure aqueous LIBS experimients were comupletedl using the labo-

ratory set-up detailed in Figure 5-1. Two Big Sky CFR-200 Nd:YAG lasers configured

with the beamns co-linearly aligned prior to exiting the aperture (Particle Image Ve-
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YAGFiberOtic

Figure 5-1: Laboratory set-ul for high pressure aqueous double pulse LIBS experi-

ments

locinmtry or PIV configuration) were operated at 1064 nm with a 5 Hz repetition rate.

Each laser is equipped with a motorized variable attenuator serially controlled l)y a
computer, enabling the laser pulse energies (El and E2) to be varied iSepenently

from 0 to 200 mJ, in increments of approximately 1 mJ. Plasma emission is collected

with an Echelle spectrometer (LLA Echelle ESA 3000). The spectrometer is capable

of detecting elements with wavelengths of 200 - 780 nm at a spectral resolution of

10 - 50 pm. Accurate timing of the laser firing, the interpulse delay time (AT, the

time between the firing of laser pulse 1 and laser pulse 2) and the gate delay (td. the

time between the firing of the second laser pulse and the turn-on of the spectrometer)

was controlled by a timing box (Berkeley Nucleonics Corporation Model 565). The

integration time of the spectrometer, gate width (tb), is also controllable. The double

pulse parameters are clarified in Figure 5-2.

An 8.89 cm x 8.89 cm x 8.89 cm titanium sample chamber that holds 27 ml

of liquid connects to a high pressure metering pump (Eldex Model A-30-S) using

Swagelok fittings to pressurize samples up to 4.1 x 107 Pa. The sample chamber

is equipped with a sapphire window (Meller Optics, 2.54 cm diameter x 0.64 cmi

thickness, AR-coated at 532 nm/1064 nm, custom part) that allows laser pulses to

enter the sample chamber. A series of AR-coated optics are used to focus the laser

beams into the sample chamber and to focus the plasma light onto an optical fiber for

delivery to the spectrometer. The plasma light is collected collinear to the incoming

laser beam to simulate the design that would be most practical for an ocean-going
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AT td  t b

E, = Laser 1 pulse energy
E2 = Laser 2 pulse energy
AT = Interpulse delay time (length of time between the

firing of laser pulse 1 and laser pulse 2)
td = Gate delay (length of time between laser pulse 2

and the spectrometer turning on)
tb = Gate width (length of time the spectrometer

remains on)

Figure 5-2: Double pulse LIBS timing parameters

LIBS system. Data are collected using ESAWIN software. Laser energy is measured

using a laser energy sensor (Coherent J25LP-MB) combined with an energy meter
(Coherent FieldMaxII-Top).

For double pulse optimization studies, peak intensities for five analytes (Mg, K,

Na, Ca, and Mn) were measured over a range of system paraneters: EI, E 2, t(j, ad

AT. E1 and E2 were each tested at 20 mJ, 60 mJ, 100 mJ, and 140 InJ. The average

irradiance (If) at the beam waist can be estimated from

7ELD 2  (5.1)

4T f 2 A2 A 14.

where EL is the laser pulse energy, D is the is the diameter of the illuminated aperture

of the focusing lens (- 25 mn), and TL is the pulse duration at the full peak width

at half of the maximum intensity (FWHM; TL = 7.5 us), f is the focal length of the

focusing lens (35 inun), A is the laser wavelength (1064 mn), and M2 is the Ieam

propagation ratio that is typically 2 - 10 for Nd:YAG lasers (we estimate a value

of 6) [28]. The pulse energies of 20 mJ, 60 mJ, 100 mJ, and 140 mJ correspond to

irradiance at the bearn waist of 2.62 x 1012 W/cm 2, 7.87 x 1012 W/cm2 , 1.31 x

1013 W/cm 2, 1.84 x 1013 W/cm 2, respectively.

For optimization of experimental parameters, studies were conducted at three
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pressures., 1 x 105 Pa, 1.38 x 107 Pa, arid 2.76 x 107 Pa, which correspond to ocean

depths of approximately 0 in, 1362 in, arid 2724 m respectively. For Mg and K, the

gate delay was tested at 10 ns, 50 ns, 100 ns, and 500 ns and the interpulse delay

was tested at 50 ns, 100 ns, 500 ns, 1000 ns, and 5000 ns. For Na, Ca, and Mn,

the gate delay was held constant at 50 ns and the interpulse delay was tested at

50 us, 500 ns, and 5000 ns. Each combination of these conditions was evaluated

for a total of 320 conditions for Mg and K and 48 conditions for Mn, Na, and Ca.

For all studies, the gate width was held constant at 200 ns arid the amplification

of the Echelle spectrometer was set to the maximum value of 4000. Five spectra

were taken at each optimization condition and for calibration curves ten spectra were

taken. All spectra were comprised of 100 accumulations. To account for the high

resolution of the spectrometer and the peak broadening that occurs from liquids, all

data were grouped into sets of 9 wavelengths. Each set of datapoints (9 x 5 for the

optimization or 9 x 10 for the calibration curves) was then processed using extreme

value distribution statistics described by Michel and Chave [29].

All calibration curves were made at three pressures (1 x 105 Pa, 1.38 x 10' Pa, and

2.76 x 107 Pa). Where shown, error bars represent the double-sided 95% confidence

limits for the extrene value parameters defined in [29].

Solutions were made using MgC12.6H 20, NaCl, KCI, MnSO 4-H2O, and CaC12-H 20

dissolved in DI water. All concentrations are given in parts per million (ppm.,

wt./vol.). For the optimization studies the concentrations used were 5000 ppni Mg.

1000 ppm K, 100 ppm Na, 1000 ppm Ca, arid 1000 ppm Mn.

5.4 Results and Discussion

For double pulse LIBS of high pressure aqueous solutions, optiniizing the key pa-

raieters (El, E2, td, arid AT) individually for each element of interest is essential

for identifying the conditions under which each can be detected. The optimization

studies presented here show that these conditions are pressure dependent for double

pulse LIBS. Outside the range of these conditions, some of the elements prove to

be undetectable. Through the optimization of the parameters, a set of conditions

are established that allow calibration curves to be made for determining the limits

of detection for high pressure bulk aqueous solutions using the current LIBS system

setup.
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5.4.1 Magnesium

Results for the 518.4 nn ig (I) peak are presented in Figures 5-3 to 5-5. Froim

these figures, the need for a short gate delay (< 100 ns) is evident, irres)ective of

the pressure or the laser pulse energies. At all pressures, when tj = 500 is. Mg (I)

is not detectable. At 1 x 105 Pa. the intensity was greatest with a longer inter)ulse

delay (1000 is to 5000 us) (Figure 5-3). It was also best to use a smaller El than

E 2. For example, two favorable conditions were E1 = 60 nJ, E 2 = 100 in. and E1 -..

20 mJ. E 2 = 100 n1J. At 2.76 x 10' Pa, the greatest intensity peak exists when AT

had the smallest value (50 ns) (Figure 5-5). The El and E 2 that gave the greatest

intensity were both in the range of 60 iJ - 140 m.J. At 1.38 x 107 Pa. the optimal

AT was intermediate between that for 1 x 105 Pa and 2.76 x 107 Pa. At 2.76 x 107

Pa. a very intense peak was obtained for the condition E1 = 60 nJ. E2 = 60 1,J, t,d

= 50 ns, an(d AT= 50 is. Therefore, a calibration curve was constructe(d using these

conditions as shown in Figure 5-6. From this calibration curve and from examining

spectra of the calibration data (Figure 5-7). it is clear that Mg (I) can be (ete(te(d to

only 5000 ppin.

3 
3 04 X I04

2.5 2.5

Ils 0 R .s U

E (E ) E2 (ih

3
s

O 10 31l0

3 t'3 1

2.5 2.50

2 2

0, 0 2 3 0 ol 0 .

Interpulse Delay (ns) Gate Delay (ns)

Figure 5-3: Mg (I) (518.4 ini peak) optimization at 1 x 105 Pa
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Figure 5-5: Mg (I) (518.4 nm peak) optimization at 2.76 x 107 Pa
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Figure 5-7: Spectra of Mg (I) peak (518.4 nrn) at 2.76 x 107 Pa. The concentrations
from bottom to top are 1000 ppm and 5000 ppin. (El = 60 mJ, E2 = 60 InJ, td =

50 ns, and AT= 50 rs). For clarity, the spectra have been offset froi each other by
500 a.u.
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5.4.2 Potassium

The results of the optimization studies for the 769.9 nin K (I) peak are shown in

Figures 5-8 - 5-10. Potassium was detectable over an unusually wide range of condi-

tions. Potassium has the lowest ionization energy (4.31 eV) of the elements that were

studied which contributes to ease of detection. In particular, a wide range of inter-

pulse delay times was suitable at all pressures. At 1 x 10 Pa and 1.38 x 10' Pa, the

use of two high energy pulses resulted in the greatest peak intensity. At the highest

pressure condition (2.76 x 10' Pa), a lower energy pulse followed by a higher energy

pulse was advantageous. For the calibration curve, the condition E1 = 100 mJ, E 2 =

140 InJ, td = 1000 ns, and AT= 50 ns was selected (Figure 5-11). The calibration

curve reveals that K (I) is detectable to 500 ppm. Spectra of the calibration data

confirm this and are shown in Figure (5-12).

1 0 0 0 -.. . . ... . .. . ......... . .. .. .......... ....... 1000 ..... . ...

800 800 

600 * . 600
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S 400-

200 200

0 I I 00 20 40 60 so 100 120 140 0 40 6 o 1082 4
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I000 1000- -.

.d5004 -1 00, 0
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Figure 5-8: K (I) (769.9 nm peak) optimization at 1 x 105 Pa
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Figure 5-12: Spectra of 769.9 rm K (I) peak at 2.76 x 10' Pa. Concentrations of
spectra from bottom to top are 100 ppm, 500 ppm, 1000 ppm. (Ei = 100 mJ, E2 =

140 mJ, td = 1000 ns, and AT= 50 ns). For clarity, the spectra have been offset from
each other by 200 a.u.
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5.4.3 Calcium

The results for the 422 nni Ca (I) peak are shown in Figures 5-13 to 5-15. At I x

105 Pa. the greatest intensity peak was detected when a long interpulse (Ielay time

was used (500 to 5000 ns) with a low energy pulse (typically 20 in.J) followed 1)v a

higher energy pulse (60 n,J - 140 inJ). At both 1.38 x 107 Pa and 2.76 x 107 Pl,

the greatest intensity peak was detected when two high energy pulses (typi(-ally 100

i.J - 140 in.J) were separated by 50 ns. As a result, the condition selecte(d f)r the

calibration curve was E, = 100 in,i E2 = 100 mJ, tj = 50 ns, and AT= 50 ns. The

calcium calibration curves for both the 393 rn Ca (II) and 422 ni Ca (I) )eaks are

shown in Figure 5-16. The limit of detection for calcium using the conditions select((t

is 500 ppm. Spectra at these conditions are shown in Figure 5-17.
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Figure 5-13: Ca (I) (422 nin peak) optimization at 1 x 105 Pa

128



4000 - -- -- - - m -I I

* 0e~3000 * 3000-

4112000- 0 ,2000- 0

0 0 1000- 0
* 0

o | -- - - 8 ................ (D I .. .. ......... 0 ...... 120.14o1 .- o .. . ....... ........ .. • ,
20 40 60 s0 too 120 140 2 40 60 so 100 120 140

EI (m J) EI (W)

4000

30000

P2000 0

0 00 2000 3000 4000 5000
Interpulse Delay (ns)

Figure 5-14: Ca (I) (422 nl peak) optimization at 1.38 x 10' Pa

12000 12000

10000.3 10000,

3000, NN,0
N N 06000i w •

: 8 I
2000 2000o

0 1 °
20 40 60 so 100 140 20 40 60 90 100 120 140

I E I (mJ)

12000

0:

0 1 0 . . .

Interpulse Delay (ns)

Figure 5-15: Ca (1) (422 nm peak) optimization at 2.76 x 10' Pa
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5.4.4 Manganese

The optimization study results for the 403 nm Mn (I) peak are shown in Figures 5-18

to 5-20. Although a Mn (I) triplet exists at 403 ui11, peak broadening in liquids causes

it to be unresolvable, and hence a single 403 uiii peak is used for this study. At 1

x 105 Pa. a low first energy pulse (20 mJ) followed by a higher second energy pulsc

(60 m,J - 140 iii.J) with a long interpulse delay time (5000 is) gave the highest peak

intensity (Figure 5-18). When the pressure was increased, the need for a significantly

shorter interpulse delay time was evident (Figures 5-18 - 5-19). At the highest pressure

condition, two high energy pulses gave the most intense peak (Figure 5-20). Using a

low second energy pulse (20 mJ) was not beneficial at this pressure condition. At the

intermediate pressure. 1.38 x 107 Pa. several parameter combinations can be used.

Either a low energy first pulse (20 mJ) followed by a higher pulse (60 mJ - 140 in.J) or

two higher energy pulses (60 niiJ - 140 mJ) were suitable characteristics of both the

low pressure and high pressure conditions are workable and hence this is possibly a

transition pressure. For Mn (I). the conditions that were selected for the calibration

curve were E1 = 100 i,iJ, E 2 = 60 mJ, td = 50 is. AT= 50 is. with results shown

in Figure 5-21. Spectra at these conditions are shown in Figure 5-22. From b)th Ith

calibration curve (Figure 5-21) and the subsequent spectra (Figure 5-22), the limit of

detection is 1000 ppm.
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Figure 5-19: Mn (1) (403 nm peak) optimization at 1.38 x 107 Pa

133



1400 1400 - -

1200 0 - 1200- 0

1000 0 -1000 0

Soo m 0

600 600

400 6 - 400 *

200 3 
20:

20 40 60 so 100 120 1 20 40 60 80 100 120 140
E (mJ) E2 (mj)

140

12000

10000

2001

0

0 1000 200 3000 4000 5000
Interpulse Delay (os)

Figure 5-20: Mn (I) (403 uln peak) optimization at 2.76 x 107 Pa

10 4

10 3

2I

102

100

I 10-  10°  101 102 103 104

Concentration (ppm)
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134



6000

5000

4000

3000,

1000,

990 395 400 405 410 415 420
Wavelength (nm)
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5.4.5 Sodium

The 588.995 nim Na (I) peak from the so(ium doublet was used for optiflizatioIn

studies (Figures 5-23 - 5-25). The highest intensity at 1 x 105 Pa was recorded when

a low energy pulse was followed by a high energy pulse and a long interpulse delay tine

was used (Figure 5-23). For example, the greatest intensity was recorded for E, = 20

rnJ, E 2 = 140 nJ, and AT = 5000 ns. At 1.38 x 107 Pa, the greatest intensity peaks

were recorded when two high energy pulses (60 mJ to 140 mnJ) were fired in rapid

succession in either order and separated by 50 ns (Figure 5-24). Since the inter)ulse

delay thie is very small, these conditions are close to that for single pulse operation

with a very high energy pulse. At 2.76 x 107 Pa, the greatest intensity )eak again

exists when two high energy pulses (60 rnJ and 140 nJ) are rapidly fired in either

order separated by 50 ns (Figure 5-25). The lowest intensity peaks were recorded at

all pressures when the second energy pulse was 20 mJ, suggesting that the secon(

pulse must be of sufficient energy or irradiance to excite or re-excite plasmia emission.

The sodium calibration curve was therefore made at E1 = 60 iiiJ, E 2 = 140 inJ, AT =

50 ns, and td = 50 us and is shown in Figure 5-26. Spectra made at the high pressure

(2.76 x 107 Pa) condition which clearly indicate the limit of detection of 50 ppn are

shown in Figure 5-27.
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Figure 5-23: Na (1) (588.995 nnm) optuniization at 1 x 105 Pa
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Figure 5-27: Spectra of the Na (I) doublet peaks (588.995 nm and 589.6 nin) at 2.76
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The limits of (detection for sodiunm as wvell as the other analytes rep)ortedI here are

much higher t hian exp)ected1 based1 oii earlier work [12. 14]. Ini an effort to (let eriniinc

if the low throughput (flI0) Echelle spectrometer is the limiting factor an add(it ina

calibratioin curve was comipletedl at 1 X 10 5 Pa at an optimal atmospheric pressure

cond(itioni. Lawrence-Snyder ct al. report with the use of a Chroinex Czern.y-Turnier

sp)ectromieter coupled to an 1CCD camera, that for Na at 3.4 x 10'i Pa using l=

7 in.J. E2 =48 miJ. and( td 1 its. the optimal interpunlse (lelay tinie is b)etweenl

app)roximiately 20 and 50 its [16]. In our work. first, we selected1 a low energy pullse

(20 mJ) followed by a high energy p)ulse (140 rnJ) and( the op)tinal interp)ulse (lcla'v

time b)etweenl themn was determined. This interpulse delay was then usedl to create ii

calibrationi curve. In the optimization study for high pressure. the interpullse tuning

was only carriedl out to 5 its. The first p)eak intensity was measured at 1 Its. then

at 5 Its, then at 5 Its increments to a maximum of 170 its. Figure 5-28 (details the

effect, of inlterlpu1sc timing on the intensity onm the 588.995 nmin Na (1) peak. The

imntensity is fairly uniform from 10 its until 140 its. After 140 its, t he intensity dtrops

off. Froni tis plot, it appears validl to select anm interpulse (delay time between 1 - 140

its; therefore. we select 70 its to construct a calibration curve. Comparing this time

scale to that shown ini Lawrence-Snyder et al. [16]. this seems coinsistent (tie to our

use of a signmificanitly higher second1 energy pulse. Using the 70 its interpulise dcVlaY.

time., a calibration curve was conmstructedl amid is shownm in Figure 5-29. Although We

have nmow usedl the optimal cond(ition for 1 x 105 Pa with a long interlpulse (delay

time, the detectiomi iniit is again omnly 50 ppmn. This cani also 1)e verified by lookinig at

the spectra (Figure 5-30). This suggests that the Echelle spectrommeter is the timnitinug

detection factor.
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5.5 Conclusions

Double pulse LIBS was used to detect five analytes in bulk aqueous solutions inpor-

tant in hydrothernal vent chemistry at pressures up to 2.76 x 107 Pa. The key double

pulse parameters were optimized for each of the elements at three pressures (1 x 105

Pa, 1.38 x 107 Pa, and 2.76 x 107 Pa). The parameters needed for detection were

found to be both element and pressure dependent. The use of the optimal )aranie-

ters is essential because outside of this set of parameters, the elements may not be

detectable. Potassium and sodium were detectable over a wide range of conditions.

In general, for all elements, as pressure was increased, the use of a shorter interpulse

delay was necessary arid at 2.76 x 10' Pa, an interpulse delay time on the order of

50 ns should be used. For all conditions studied, a short gate delay (usually < 100

ns) was required. This is similar to the results from single pulse LIBS (Chapter 4).

The need for a short gate delay suggests that in bulk liquids, the plasma lifetime is

short, possibly lasting only on the order of 500 ns.

Using each of the optimally established conditions, calibration curves were made

at three pressures (1 x 105 Pa, 1.38 x 107 Pa, and 2.76 x 107 Pa). From these. the

limits of detection for the five analytes were found to be 5000 ppn Mg, 500 ppIn K,

500 ppm Ca, 1000 ppm Mn, and 50 ppm Na using the current system set-up. The

limits of detection were the same for all three pressures tested. The main reason that

LIBS researchers choose to use double pulse LIBS instead of single pulse LIBS is to

achieve improved sensitivity and improved signal. When optimization of conditions

was completed using single pulse LIBS and then subsequently calibration curves were

made using the same system set-up for the present work for Mn, Ca, and Na (Chapter

4), the resulting limits of detection were found to be 500 ppm Mn, 50 ppm Ca, and

50 ppm Na. This suggests that the use of double pulse LIBS in high pressure aqueous

solutions may not be advantageous. Lawrence-Snyder et al. reported no emission

enhancements using double pulse LIBS above 1 x 107 Pa [16]. DeGiacomo et al.

emphasize the need for selecting an appropriate interpulse delay time for underwater

LIBS [23]. DeGiacomo et al. stress the need to find the interpulse delay time that

allows for the second pulse to form a plasma in a bubble that is maximally expanded.

The high pressure environment of our experiments may cause the bubble to collapse

too rapidly. As a result, the highest intensity peaks that are observed occur when

two pulses are close together, similar to a single pulse. Lawrence-Snyder et al. [30]

suggest that at higher solution pressures (8 x 107 Pa), the bubble formed by the

first laser pulse is confined by its surrounding pressure. As a result, the bubble never
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expands to the inaxiimm volumne that is observed at lower pressures. Therefore, the

emission enhancements are not observed.

Although the use of double pulse LIBS proved less favorable than expected, it

should be noted that one major contributing factor was the spectrometer used in

these studies. The Echelle spectrometer has a very high resolution but a very low light

throughput and poor sensitivity, with an f number of 10. In an effort to maximize

the light throughput, it would be advisable to use a spectrometer with a smaller f

number. As an example, the use of a spectrometer with an f number of 2 could

improve the throughput by a factor of 25 and thus improve the limits of detection.

Furthermore, the use of a PMT as the detector, may further improve detection limits

for bulk liquids as denonstrated by Crenmers et al. who neasured at atlos)heric

pressure Na I (589.00 nim) at 0.014 ppm, K I (766.49 rnn) at 1.2 ppm, Mg 11 (279.55

nrn) at 100 ppm, and Ca II (393.37 nrn) at 0.8 ppm [12]. Further work is needed

to maximize the light collection by changing systein components for bulk aqueous

solution experiments.
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Chapter 6

Preliminary investigations on

matrix effects of Na, K, and Ca for

bulk liquids at oceanic pressures

6.1 Abstract

Chemical matrix effects occur when one element present in a sample affects the enlis-
sion of another element also present in the sample. In this study, the effect of NaCl
on the detection of K and Ca in bulk aqueous solutions at pressures up to 2.76 x
107 Pa is explored. In addition, the effect of the background matrix (chloride versus

sulfate) on the detection of Na and K is examined. While the investigations into the
effect of NaCl on K and Ca proved inconclusive, the background matrix has no effect

on the ability to detect Na or K.

6.2 Introduction

When multiple elements are present in a sample, chemical matrix effects can oc-
cur in which the presence of one element affects the emission of another element.
Changing the concentration of one element can affect the signal intensity of one or
more other elements even when the concentrations of those elements are not altered.
This can adversely affect the ability to make quantitative measurements and lead to

complications in calibration. However, if matrix effects can be understood, then tile
concentration effect can be quantified [1].

In a plasma, the addition of an easily ionizable element can shift the neutral-ion
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equilibriun concentration of an analyte toward the neutral species (Le Chatlier's

principle). For example. addition of ail easily ionizable species to a plasna can redu(c

the emission of an ionized species. The easily ionized species increases the electron

density which decreases the concentration of the ionized species [1]. Creiners ct ail.

[2] re)orted a matrix effect in bulk liquids which showed that the intensity ratio of Ca

II/Ca I decreased with the additiol of NaCl. A similar effect was reported l)y Michel

:t al. [3] (Chapter 2) using double pulse LIBS over a range of )ressures. Michel ct

al. also reported no effect on K or Mn emission intensity with the addition of NaC1.

Several other matrix effects have been reported. For example. Charfi and Harith

[4] showed that when Nlg and Na were neasured in pure solution versus in mixedl

solutions (both Nlg and Na present), the limits of detection were lower for the pure

solutions. Eppler ct al. [51 investigated matrix effects of Ba and Pb in sand an(

soil, and saw that Ba (I1) and P1) (I) emission was dependent on analyte speciatioln.

As samples were varied from a pure said to a pure soil composition, the Ba (II)/C

(I) signal decreased. The decrease correlated with an increase in electron density,

possibly due to a change in ionized species.

Matrix effects can be corrected by applying calibration curves for each cleinenlt

contained in the substrate of interest; analogous to estimating the partial derivatives

for a inultivariate process, as opposed to that for a single one as in most calibration

curves. This requires many reference sanmples and is very tinle consuning. Ill addition,

it is not feasible for in situ measurements with unknown, nixed conmlponent sampl)les

[6]. Several research groups have developed methods to compensate for matrix effects.

St-Onge et al. have used an internal standardization method to reduce nmatrix effects

[7]. Barrette and Turnel showed that matrix effects could be partially overcome by

the use of a inultivariable calibration curve [8]. Ciucci ct al. developed an algorithm-

based procedure for calibration-free quantitative elemental analysis of materials [9].

Understanding matrix effects is essential for quantitative LIBS. In this preliminary

investigation, matrix effects of three elements (Na, K, and Ca), are explored in bulk

aqueous solutions at pressures up to 2.76 x 107 Pa. In addition, the effect of a

background matrix (chloride versus sulfate) on the detection of Na and K is examined.

6.3 Experimental

The laboratory set-up for simulating the use of LIBS inl the deep ocean has been

previously described ill Chapter 4. For all experiments described here, single )ulse

LIBS experiments were run with the laser pulse energy kept constant at 40 minJ (which
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corresponds to an irradiance of the beam at the beam waist of zz 5.25 x 1012 W/cIm12

for this system). For all experiments., td = 50 ns, and tb = 200 us and the Echelle
spectrometer amplification was set to the maximum value of 4000. All spectra taken

were composed of 100 accumulated shots. All raw spectral data were processed using

generalized extreme value distribution statistics detailed in a paper by Michel and

Chave [10] after binning the data over 20 wavelengths. Where shown, error bars

represent 95% confidence intervals of the GEVD.

Solutions were made from NaCl, KC1, NaSO 4 -H20, MnSO 4 -H20, and CaC12.2H 20

dissolved in de-ionized water. All concentrations are given in parts per million (ppm.,
wt./vol.). All experiments were completed at three pressures, 1 x 105 Pa. 1.38 x 10'
Pa, and 2.76 x 107 Pa.

6.4 Results and Discussion

6.4.1 Matrix Effects of K and Na

Effect of Sodium Chloride on the Emission from Potassium

Four different conditions (Table 6.1) were used to study the effect of NaCl on the

emission intensity of the 769.9 nm K peak. 120 spectra were taken at each of Con-

ditions 1 and 3 to establish a low and high calibration point for K alone. Three
replicate measurements each consisting of 60 spectra were taken at Conditions 2 and

4 to assess the effect of NaCl on K. Figure 6-1 shows the results. When NaCl was

added to low concentration (102 ppm) K, no peak intensity change was seen at all

three pressures. In contrast, in high concentration (1022 ppm) K, when NaCl was
added, the K peak intensity decreased at all three pressures. This is in contrast to

prior work [3] (Chapter 2) where no effect of NaCl was seen on the peak intensity of

K.

Table 6.1: Conditions used to study the K-Na matrix effect
Condition K Cl Na

1 102 ppm 93 ppm 0 ppm
2 102 ppm 4959 ppm 3155 ppm
3 1022 ppm 927 ppm 0 ppm
4 1022 ppm 4959 ppm 2614 ppm
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Effect of Potassium Chloride on Emission from Sodium

Four different conditions (Table 6.2) were used to study the effect of KCI oin the

detection of the 588 nm Na peak. 120 spectra were taken of Na at Conditions 1

and 3 to create low and high concentration calibration points for Na alone. Three

replicate measurements each consisting of 60 spectra were taken at Conditions 2 and

4 to assess the effect of KCI on Na. The results are shown in Figure 6-2. The high

variability from low to high pressure without any discernible trend suggests that more

laboratory work is needed to determine if a matrix effect exists.

Table 6.2: Conditions used to study the Na-K matrix effect
Condition K Cl Na

1 0 ppm 4865 ppm 3155 ppm
2 102 ppm 4959 ppm 3155 ppm
3 0 ppm 4032 ppm 2614 ppm
4 1022 ppm 4959 ppm 2614 ppm
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6.4.2 Matrix Effects of Ca and Na

Effect of Sodium Chloride on Emission from Calcium

Four different conditions (Table 6.3) were used study the effect of NaCl on the (,mission

intensity of Ca [393 Ca (II) and 422 nin Ca (I)]. 120 spectra were taken at Conditions

1 and 3 to establish low and high concentration calibration points for Ca alone. Three

replicate measurements each consisting of 60 spectra were taken at Conditions 2 and

4 to assess the effect of NaCl on the 393 nm Ca (II) ionic peak and the 422 nn (I)

atomic peak. Figure 6-3 shows the effect of NaCl on the 393 nm Ca (II) ionic peak.

For 106 ppm Ca, the peak intensity was not measurable at any pressure, both in the

presence and absence of NaCl. When NaCl is added to a 1055 ppm Ca solution, the

emission intensity is significantly lower. It should be noted that at 1 x 10 Pa and

1.38 x 107 Pa, the measured intensity under all conditions is relatively low. Figure

6-4 shows the results for the effect of NaCl on the 422 rnm Ca (I) atomic peak. The

results are inconclusive. To assess possible drift in the spectrometer between the pure

Ca data and the Ca plus NaCl data, the ratio of the intensity of the 393 1nn1 peak to

the 422 inn peak is plotted in Figure 6-5. The result suggests that the variability is

not due to simple drift, but to another cause of systematic error.

Table 6.3: Conditions used to study the Ca-Na Matrix Effect
Condition Ca C1 Na

1 106 ppm 187 piip 0 pp
2 106 ppm 4959 ppm 3094 ppm
3 1055 ppm 1867 ppm 0 ppnm
4 1055 ppm 4959 ppm 2005 ppni
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Effect of Calcium Chloride on the Emission of Sodium

A sodium calibration curve was made with 120 spectra taken at three concentrations

(Conditions 1 - 3 shown in Table 6.4). Three replicates of 60 spectra were taken

at two concentrations of Ca plus NaCl. The data shown in Figure 6-6 reveal high

variability in the LIBS system measurements. In general, when Ca was present, the

Na peak intensity was reduced. However, the systematic error denoted by the scatter

in the data suggests that more data collection is needed to confirm the result.

Table 6.4: Conditions used to study the effect of CaC12-2H 20 oil emission of Na
Condition Ca Cl Na

1 0 ppm 3091 ppm 2005 ppm
2 0 ppm 4032 ppm 2614 ppm
3 0 ppm 4865 ppm 3155 ppm
4 1055 ppm 4959 ppm 2005 ppm
5 106 ppm 4959 ppm 3094 ppn
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6.4.3 Detection of Na and K in a Chloride Versus Sulfate

Matrix

Two experiments were carried out to determine if the presence of a chloride or sulfate

substrate affects the detection of an element. The intensity of potassium (1002 ppii

K) in two matrices, KCI and K2SO4, and the intensity of sodium (2356 ppni Na),

in two matrices, NaCl and NaSO 4, were measured. Figures 6-7 and 6-8 contrast the

ability to detect K and Na, respectively, in a chloride matrix versus a sulfate matrix.

For K, no matrix effect is seen at any of the pressures (1 x 105 Pa, 1.38 x 10' Pa,

2.76 x 107 Pa) tested. For Na (Figure 6-8), there is a possible matrix effect, although

additional experiments are necessary to determine this due to scatter in the data.

In the development of an oceanic LIBS sensor operable in the vent environment. the

sensors must be capable of detecting both K and Na in the presence of both sulfate

and chloride, which these data support.
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Figure 6-7: Detection of 769 nm potassium (1002 ppm) in a chloride versus sulfate
matrix. 0 = KCI, A = K2SO4
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6.5 Conclusions

Matrix effects of Na, K, and Ca were examined in a preliminary study. Although

the main goal was determining how the presence of NaCl affects the peak intensities

of K and Ca, the data showed inconsistencies and were therefore inconclusive. In

addition, the results were not consistent with previous preliminary findings reported

by Cremers et al. [1] and Michel et al. [3]. The data suggest that matrix effects are

smaller than the systematic variability of the measurements, and suggest that further

laboratory experimentation is needed to elucidate if significant matrix effects exist.

A comparative study to investigate the ability to detect analytes in a chloride

versus a sulfate matrix showed no significant difference. The results indicate that Na

and K are both detectable in chloride and sulfate matrices. The K peak intensities

were not influenced by the substrate present (sulfate and chloride) at pressures up to

2.76 x 107 Pa. The Na peak intensities were possibly influenced by the background

matrix (sulfate and chloride); yet, more experiments are needed to determine this

conclusively.
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Chapter 7

Conclusions and Future Directions

7.1 Conclusions

In this thesis, laser-induced breakdown spectroscopy was evaluated for its potential

for development into a new in situ chemical sensor for the deep ocean. The elements of

focus for this work were selected for their importance in hydrothermal vent chemistry.

Although it is potentially and theoretically possible to use LIBS to detect all elements,

it was found during this laboratory investigation that it is more difficult to detect

elements in bulk liquids at the concentrations desired than was anticipated. However,
one important finding was that if an element could be detected in a bulk liquid

at atmospheric pressure, then it could also be detected in the same liquid at high
pressures. This thesis shows that the LIBS technique can be used successfully to

detect dissolved Li, Na, K, Mg, Ca, and Mn at pressures up to 2.76 x 107 Pa,

although not at the levels observed naturally in seawater or vent fluids for all of these

elements. The work in this thesis was completed using two different LIBS systems,

one with a Czerny-Turner spectrometer and one with an Echelle spectometer, and

with two different pressure cells.

7.1.1 Development of a New Data Processing Scheme

A new data processing scheme for LIBS spectra was developed in this thesis and was

applied to all data, except that presented in Chapter 2. In an examination of the

variability of peak intensities for both single shot and ensemble-averaged LIBS spec-

tra, LIBS data were found to have a dramatically non-normal statistical distribution.

The distribution of the peak intensities was instead found to follow the generalized

extreme value distribution. A preliminary investigation into the sources of the vari-
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ability was carried out. Laser pulse fluctuations, while identified as a contributing

source of variability, were ruled out as the the primary source. Plasma inages re-

vealed large spatial and intensity differences on a shot-to-shot basis. This analysis

led to the developinelt of a data processing scheme that accurately deals with the

extreine nature of laser-induced plasyna formation and should be used for statisticallY

accurate coniparisons of LIBS spectra instead of simply averaging spectra, the stan-

(lard iethod used byv LIBS researchers. This schele was found to be applicable for

both solid and liquid samples and for use with data taken with both a Czerny-Turner

and ami Echelle spectroieter.

7.1.2 Single Pulse LIBS

Results Using a Czerny-Turner Spectrometer

Preliiniiary investigations were carried out using a Czerny-Turner spectroineter thait

showed that Li, Ca. Mn, K, and Na were detectable in high pressure bulk aqueous

solutions. This work focused oin the energy levels needed for the detection of these

analytes and revealed that an optimal range of low laser pulse energies exists for their

detection in both low and high pressure solutions. It was hypothesized that a low

energy pulse could create a smialler, more tightly focused plasnia that fornis only at

the focal spot. However, for a high energy pulse. the high energy density inay cause

breakdown even before the pulse reaches the focal spot causing breakdown to occur

over a longer distance. The effect of pressure oii einission intensity was investigate(d

for Ca. Na, and Mi with no pressure effect seen for Ca and Na. yet. with an increase

in intensity with increased pressure observed for Mn.

Results Using an Echelle Spectrometer

Using an Echelle spectrometer, Na, Mn, and Ca were again shown to be (etecta)le
with little eflect of pressure oil the spectra. Irrespective of the laser pulse energy

selected or the solution pressure, the need for a short (less than 200 ns) gate delay

was found for the detection of analytes. This study confirmed that a low energy )ulse

(less than z 60 nmJ) is optimal. Calibration curves showed that Na, Mn, and Ca

are detectable at 50 ppin, 500 ppm, and 50 ppm, respectively. However, the limits of

detection were higher than expected which was attributed to both the poor sensitivity

and the low light throughput of the system used.
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7.1.3 Double Pulse LIBS

Results Using a Czerny-Turner Spectrometer

In this preliminary work, double pulse LIBS was used to detect four analytes (Ca.

Li. Na, and Mn) and the energy levels for maximum emission were found to vary

by analyte. Analyte detection was found to be highly dependent on the interpulse

delay. If the interpulse delay is short (< 1 ps), signal intensity is greatly enhanced

when compared to that measured using longer delay times. Two pulses separated by

a short AT approaches single pulse conditions. Such a small interpulse delay may

not be sufficient for a cavitation bubble to fully form before the second laser pulse

creates a spark. This was an early suggestion that dual pulse LIBS might not be

advantageous at elevated pressure.

Results Using an Echelle Spectrometer

Double pulse LIBS was used to detect five analytes (Mg, K, Mn, Na, and Ca) at

pressures tip to 2.76 x 107 Pa. The key double pulse parameters were optimized

for each of the elements at three pressures (1 x 105 Pa, 1.38 x 107 Pa, and 2.76 x

107 Pa). The parameters needed for detection were found to be both element and

pressure dependent. The use of the optinal parameters is essential because outside

this set of pararneters, some of the elements were not detectable, although K and

Na were detectable over a wide range of conditions. In general, for all elements, as

pressure was increased, the use of a shorter interpulse delay was necessary and at 2.76

x 107 Pa an interpulse delay time on the order of 50 ns was ideal. For all conditions

studied, a short gate delay (usually < 100 ns) was required, suggesting that iii bulk

liquids, the plasma lifetime is short, possibly lasting only on the order of 500 ms.

Calibration curves were made that established the limits of detection for the five

analytes: 5000 ppm Mg, 500 ppm K, 500 ppm Ca, 1000 ppm Mn, and 50 ppm Na

using the current system set-up. Using single pulse LIBS, limits of detection were

found to be 500 ppm Mn, 50 ppm Ca, and 50 ppm Na which suggests that the use

of double pulse LIBS in high pressure aqueous solutions may not be advantageous.

The high pressure environment may cause the bubble to collapse too rapidly and

as a result the bubble does not expand to the maximum volume observed at lower

pressures [1]. As a result, the emission enhancements seen at atmospheric pressure

are not observed in the high pressure environment.

Although the use of double pulse LIBS proved less favorable than expected, it

should be noted that one major contributing factor was the spectrometer used in
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these studies. The Echelle spectrometer has a very high resolution but a very low

light throughput and poor sensitivity, with an f ninber of 10. Further work is

needed to maximize the light collection by changing system components for bulk

aqueous solution experinents.

7.1.4 Matrix

Results Using a Czerny-Turner Spectrometer

The addition of NaCl was found to enhance the einission intensity for Ca.

Results Using an Echelle Spectrometer

The matrix effect of Na, K, and Ca was examnined to deteriliiie how the presence of

NaCl affects the peak intensity of K and Ca, although the data showed inconsistencies

and were therefore inconclusive. Na and K were foulInd to be detecta)lc in boti

chloride and sulfate matrices. For Na the peak intensities were possibly influenced

and for K the peak intensities were not influenced by the backgroundi matrix (sulfatc

versus chloride) at pressures up to 2.76 x 107 Pa.

7.2 Future Work

7.2.1 Laboratory Work

Significantly inore laboratory work is needed before a robust ocean-going systein can

be built and used successfully in the field. Although this thesis showed that many

elenients could be detected in a high pressure aqueous enviroinent. ai several were

detectable at levels found at or below the concentrations present in vent fluids, there

are many issues that need to be addressed to improve upon the current LIBS systenli.

Due to the attenuation of light in water, 532 nim or green laser light will travel

substantially further than 1064 nim laser light in the ocean. Therefore, it will be

advantageous to develop a LIBS system that uses 532 n laser pulses as the excitation

source. The disadvantage to using 532 inn laser pulses as the excitation source is the

need for a filter before the collection fiber optic. Since 532 nin is in the range that

can be detected by the spectrometer, it is iml)ortant to never collect the 532 im laser

pulse light. To prevent capturing the laser light, a 532 ini notch filter is added before

time collection fiber optic to filter out the light from the laser pulses. The addition

of this filter will mniniiimally reduce the light available to tile spectrometer. LIBS of
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liquids using 532 nni should be feasible; therefore, the next phase of laboratory work

should explore this option.

Improvements to the limits of detection could be made by using a spectrometer

with a smaller f number than the Echelle spectrometer that was used for much of

this thesis work. Although an Echelle spectrometer has the advantage of being able

to simultaneously detect multiple elements due to its broad wavelength coverage, its

high resolution yields low throughput. The Echelle spectrometer also had a small slit

width which limited light input. In addition, the use of a PMT instead of an ICCD

as the detector could be beneficial for increasing sensitivity. Changes therefore to the

detection system may allow for the elements presented in this thesis to be detected

at much lower limits of detection and for additional elements to be detected. For

example, the detection of Cu, Fe, Cl, and Br was attempted as part of this research

without success. It is recommended that a new spectrometer with a smaller f number

be selected for continued work on this project. The Echelle spectrometer used in this

work has an f number of 10 and it is strongly recommended to use a spectrometer

with an f number of 4 or 2, which would have greater throughput.

Future work should include significant studies on time variability of plasma forma-

tion. This can include imaging of both laser-induced plasmas and bubbles. Plasma

dynamics studies should be carried out in an effort to find ways to minimize shot-

to-shot plasma variability. Although this thesis included some plasma images taken

orthogonal from the incoming laser beam, plasma images could also be taken from

multiple angles to gain a multi-dimensional understanding of plasma formation. Then

by looking at what factors influence plasima dynamics (e.g., the shape of the plasma,,

the length of emission, emission intensity), more control over the plasma variability

may be obtainable. The factors that influence the plasma dynamics include the laser

(e.g., beam quality, wavelength), focusing optics, and sample pressure and should also

be studied for their impact on variability.

Calibration curves were used in this thesis to determine the limits of detection.

In future work, much work should be completed on the calibration curves to both

decrease the variability of the curves and to verify repeatability of the curves. The

calibration curves should also be extended to higher concentrations to verify that

the curves are linear. In addition, if a new spectrometer is used, calibration curves

can again be used to determine limits of detection. Once the variability issues are
resolved and the repeatability of calibration curves are established, more work call

focus on matrix effects. Matrix effect data showed inconsistencies that are thought

to arise from the variability issues and from the spectrometer used. Selecting a new

169



spectrometer may improve these studies; however, the reduction of plasina variability

again should first be addressed.

There are many additional challenges to studying liquids in the ocean environment

that were not addressed in this thesis. For example, the effect of particles in the

water on the detection of analytes should be addressed. In addition, the effect of

a flowing solution on LIBS spectra and especially the shot-to-shot variability in a

flowing system should be examined. Furthermore, laboratory work should emphasize

elements not yet targeted. In theory, all elements are detectable using LIBS; thus.

significant work is needed to determine all of the elements which are detectable in

high pressure aqueous environments.

7.2.2 Design of an Ocean-Going Sensor

Although there are several issues that need to be addressed in the laboratory to deal

with the variability issues and to improve upon the calibration curves and limits of

detection, this thesis shows that the use of LIBS in a high pressure aqueous eivi-

rolinent is feasible. Once these issues have been addressed, a LIBS sensor cami e

designed for use in the ocean. The natural extension of this research therefore is

the development of the first ever sea-going LIBS system. This will entail the de-

sign of an instrument that can be used at hydrothermal vents aboard an undcrwater

vehicle (Figure 7-1). The major components of an underwater LIBS system are a

spectrometer. source laser(s). fiber optic links and probes for these units, and (lata

acquisition/control electronics. All of these components will need to be I)ackagd

ill underwater pressure housings and provided with power and data communications

connections. Several critical issues related to integrating the system onto an under-

water vehicle also need to be addressed, including vehicle payload, power resources.

and system control. Software modifications for laser control and data collection will

be a necessary component of this work. The design of an optical probe head is a

critical element of a sea-going LIBS system. The fiber optic design nust pass the

laser pulses into the fiber, image the fiber spot onto the target, and image the plasina

emission onto a fiber buidle that couples to the spectrometer. The fiber bundle inust

be designed to withstand both the pressure effects of the ocean and also the high

energy laser pulses. In the ocean environment, there are other types of sainples that

ocean scientists will be interested in using an in situ chemical LIBS sensor for inak-

ing measurements of in the ocean. For example, LIBS could be used for analyzing

sediments, rocks, underwater archaeological artifacts, and the air-sea interface. The
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successful design and testing of an ocean-going system will pave the way for its use

by oceanographers for numerous applications.
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Figure 7-1: Future oceanic LIBS system. Illustration by E. Paul Oberlander. WHOL.
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work is the validation that select elements important for understanding hydrothermal vent fluid chemistry (Na, Ca, Mn,

Mg, K, and Li) are detectable using LIBS. A data processing scheme that accurately deals with the extreme nature of
laser-induced plasma formation was developed that allows for statistically accurate comparisons of spectra. The use of
both single and double pulse LIBS for high pressure bulk aqueous solutions is explored and the system parameters needed

for the detection of the key analytes are optimized. Using both single and double pulse LIBS, the limits of detection were
found to be higher than expected as a result of the spectrometer used in this experimentation. However, the results of this
validation show that LIBS possesses the characteristics to be a viable chemical sensing method for in situ analyte

detection in high pressure environments like the deep ocean.
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